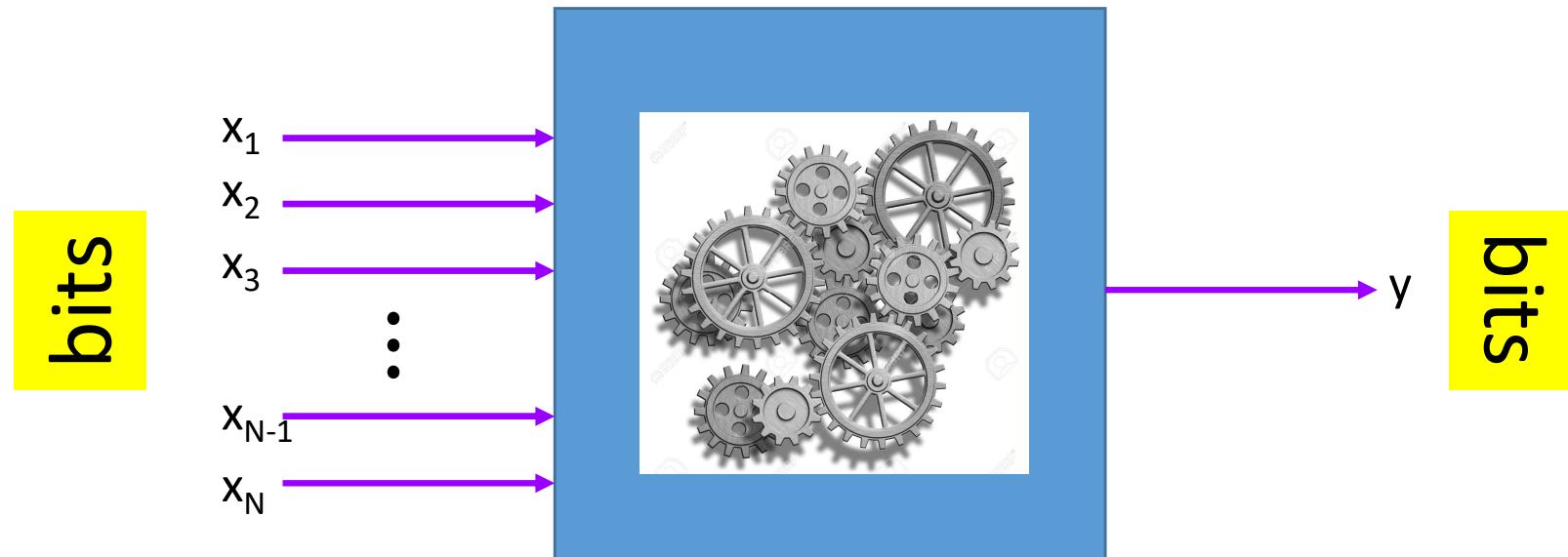


Quantum...

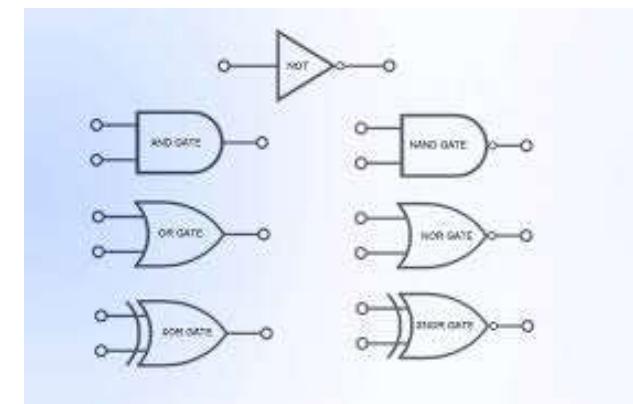
Computing
Date: XX XXX XXXX....

Lecture 2: The cat!

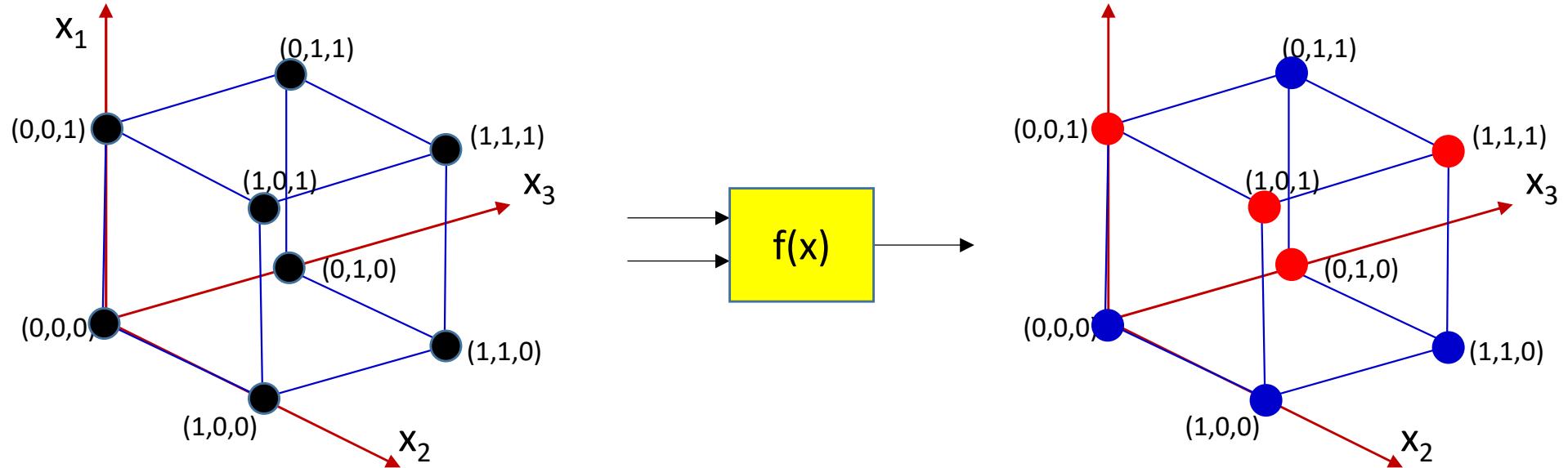
Recap: A model for computation



- A bunch of bits go in, and one bit comes out.
- Examples to the right

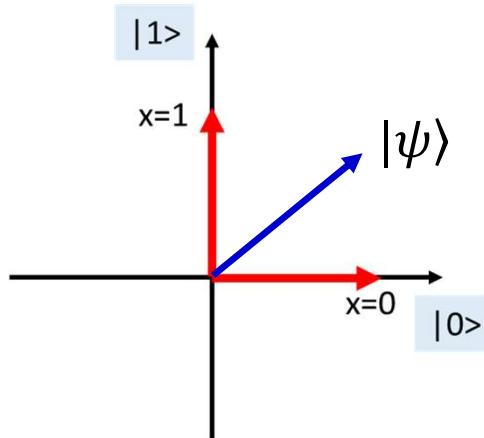
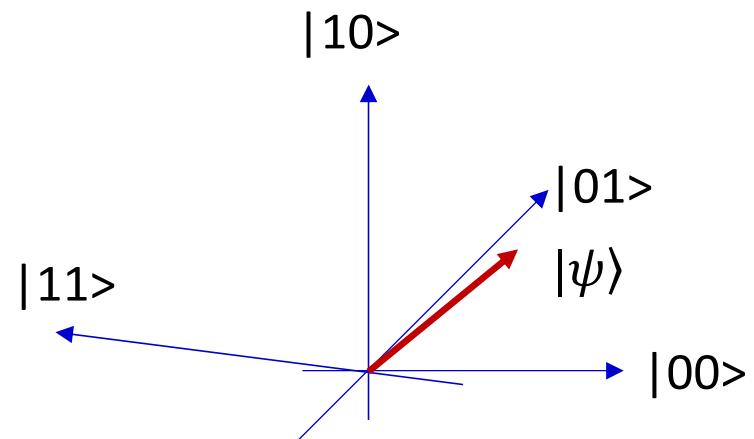


Recap: Classical math



- Algorithms are just functions that operate on bit patterns and produce an output
- Classical approach: For an N -bit input, the function operates on an N -bit input space
 - Each valid bit pattern is a vector in this space
- To fully characterize an unknown black-box algorithm we must evaluate it on all 2^N feasible inputs
 - Very expensive

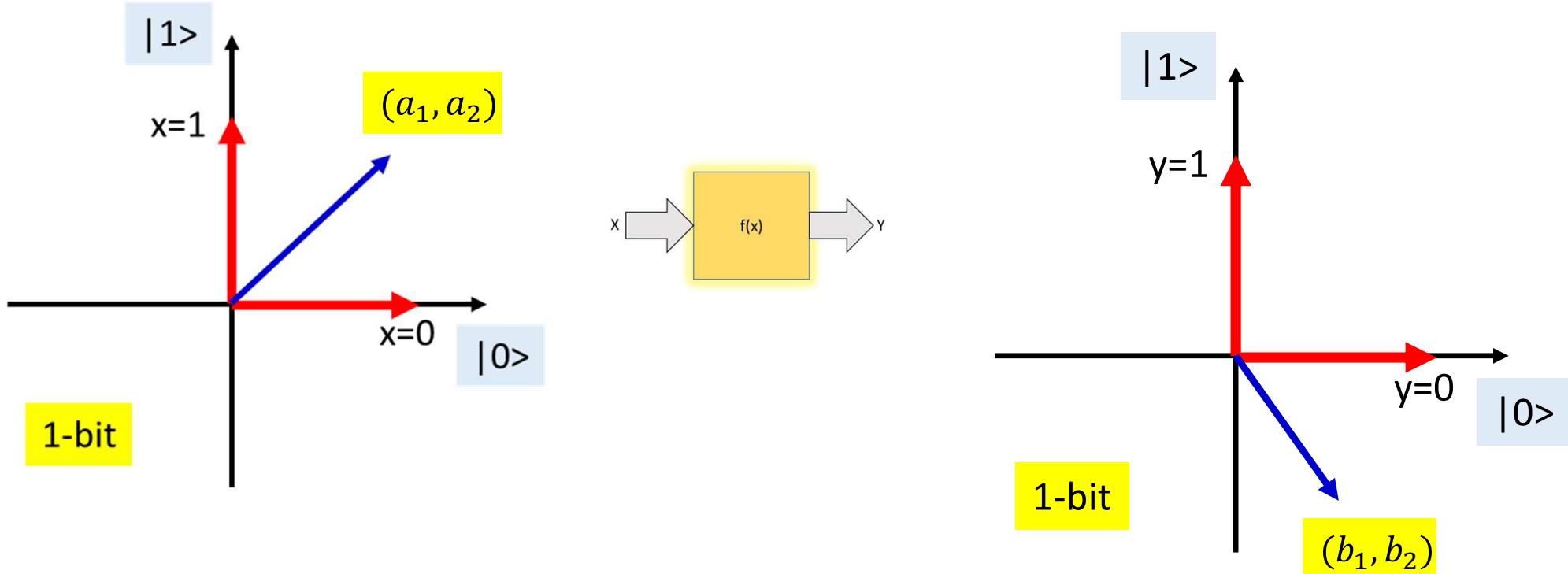
Recap: A new binary math



Lame attempt at visualizing 4D

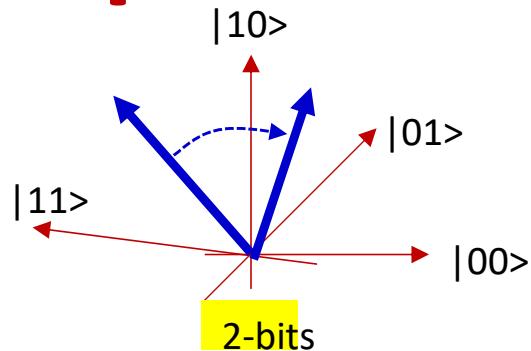
- *Bit patterns* now represent orthogonal directions
- An input is now a vector (a phasor) in this new space
 - And represents a linear combination of bit patterns
 - 1 bit: $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$
 - 2 bits: $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$
- ***Superposition*** of all possible bit patterns

Recap: The new “quantum” math



- An algorithm is now an operator that operates on the vector to produce another vector
 - Can now compute the output for *all* bit patterns in a single evaluation step
- Caveats – the operator must be:
 - Linear
 - Invertible
 - And not increase the length of the vector (i.e. it must be a rotation)
- **Additional clause:** The “Qbit” phasors must be unit length

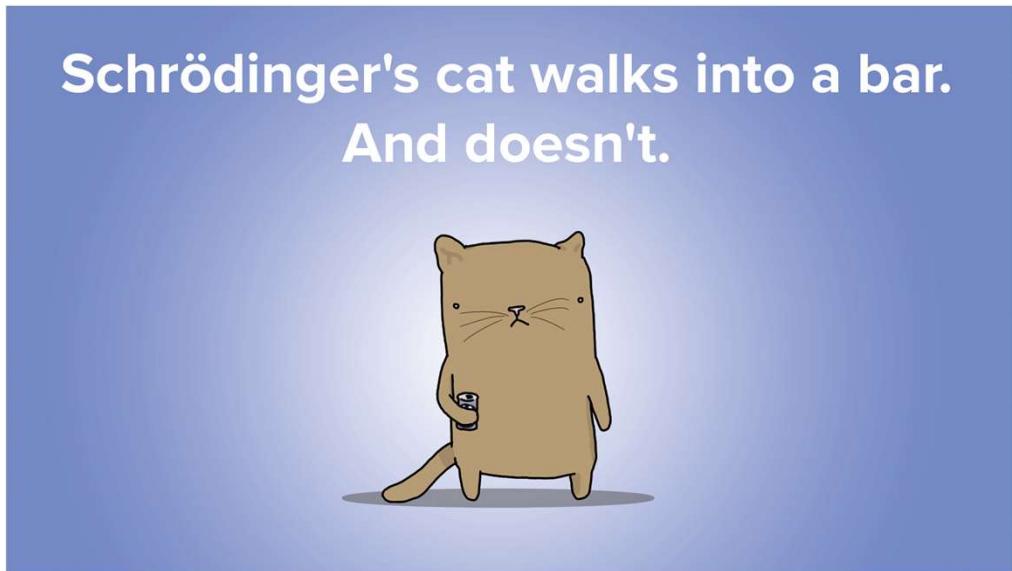
Recap: It's not realizable on a classical computer



Fact that may only interest me:
"Graham's number" is a number that's so large there isn't enough space in the universe to write it..

- A conventional (classical) computer requires a *single* N-bit register to represent a value
 - A function takes in a single N-bit value and produces a single bit
- The new representation requires 2^N numbers to represent a single value!
 - For even N=100 bits, this requires $\sim 10000000000000000000000000000000$ numbers
 - A function takes in 2^{100} values and produces 2^{100} values
 - I.e it's a 2^{200} -valued transform!
 - Which is why it's not a very *useful* way of thinking about things
- Is there a *parsimonious* way of representing a 2^{100} component vector without taking up the entire universe?

Enter.. The cat!!



- Introducing Quantum, the cat

The world according to Schroedinger

$$ih \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle$$

- The magical formula that represents the quantum number 42

The world according to Schroedinger

$$ih \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle$$

- The magical formula that represents the quantum number 42
- The solution to this is the wave function!
 - For any physical entity you have a wave function and a Hamiltonian
 - The Hamiltonian, which you could design, determines how it evolves over time
- There can be more than one solution to equation
- The entity simultaneously populates *every* solution to the above equation
 - It is in a superposition of all solutions
 - This is particularly true of the smallest units of the universe – the quanta
 - But also of everything else, really

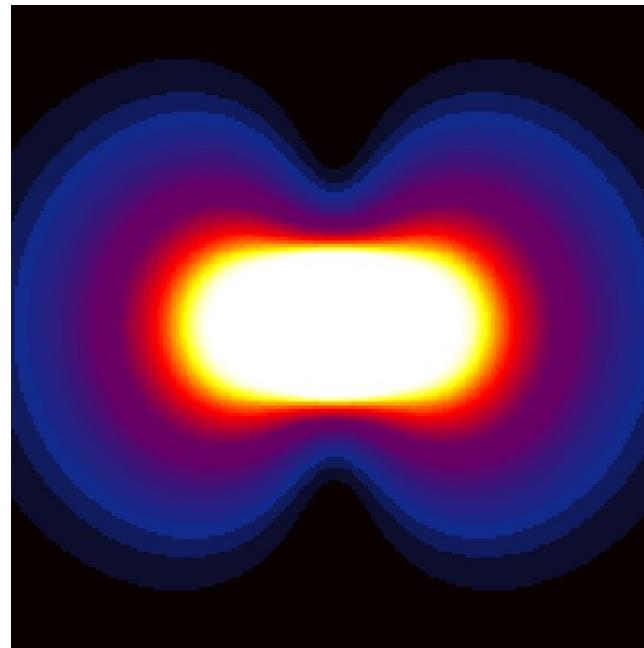
The wave function for any particle predicts its probability

$$ih \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle \rightarrow \psi(t, x)$$

$|\psi(t, x)|^2$ is the probability that the system will be *found to be* in configuration x at time t , if we were to ‘measure’ it!!

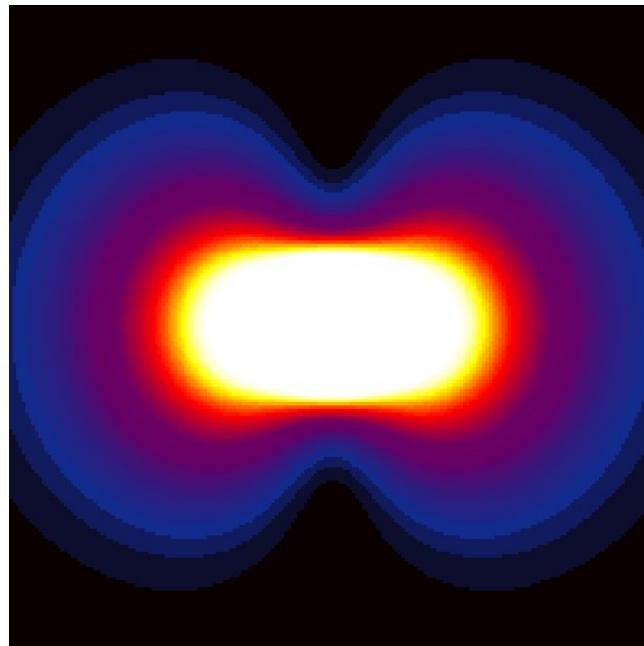
- What does this mean
- Many (possibly an infinity of) solutions exist to the equation
 - One for each x
- The entity lives in a *superposition* of all options: $\sum_x \psi(t, x)|x\rangle$ or $\int_x \psi(t, x)|x\rangle dx$
 - $\psi(t, x)$ is a **complex** value associated with each solution x at time t
- But if you were to try to *observe* it, only one of these solutions would be observed
 - The probability of observing solution x at time t is given by $|\psi(t, x)|^2$

The hydrogen atom



- A hydrogen molecule consists of two atoms sharing two electrons
- Consider one of these electrons
 - Where is it at any time? Around which nucleus in particular?

The hydrogen atom

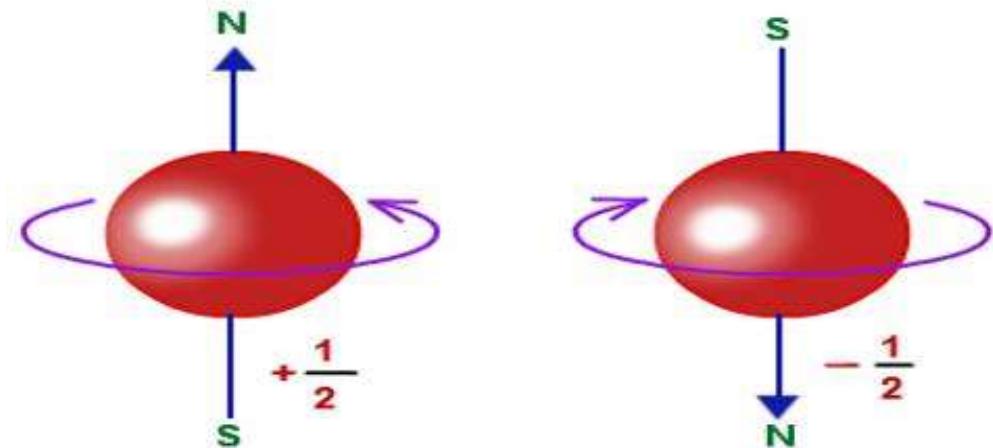


$$\psi(t, x)$$
$$\psi(t) = \alpha(t)|0\rangle + \beta(t)|1\rangle$$

$x = |0\rangle$ and $x = |1\rangle$
are the two solutions

- When you are not looking for it, it is *actually* simultaneously at both nuclei
 - It is in a ***superposition*** of both states
- $|\alpha|^2$ and $|\beta|^2$ are the probability of *finding* the electron at each location in the hydrogen molecule

The spin of an electron

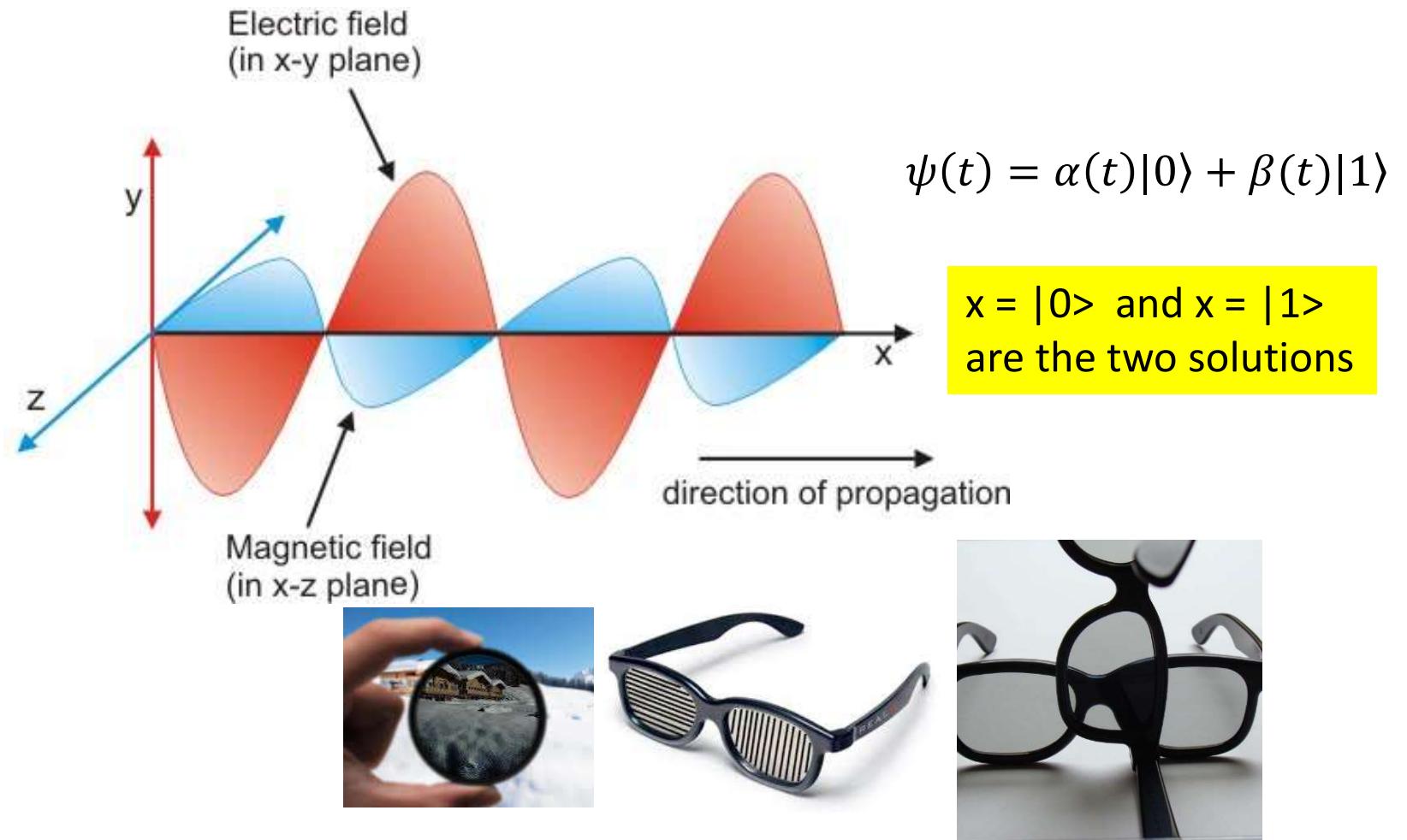


$$\psi(t) = \alpha(t)|0\rangle + \beta(t)|1\rangle$$

$|0\rangle$ and $|1\rangle$
are the two solutions

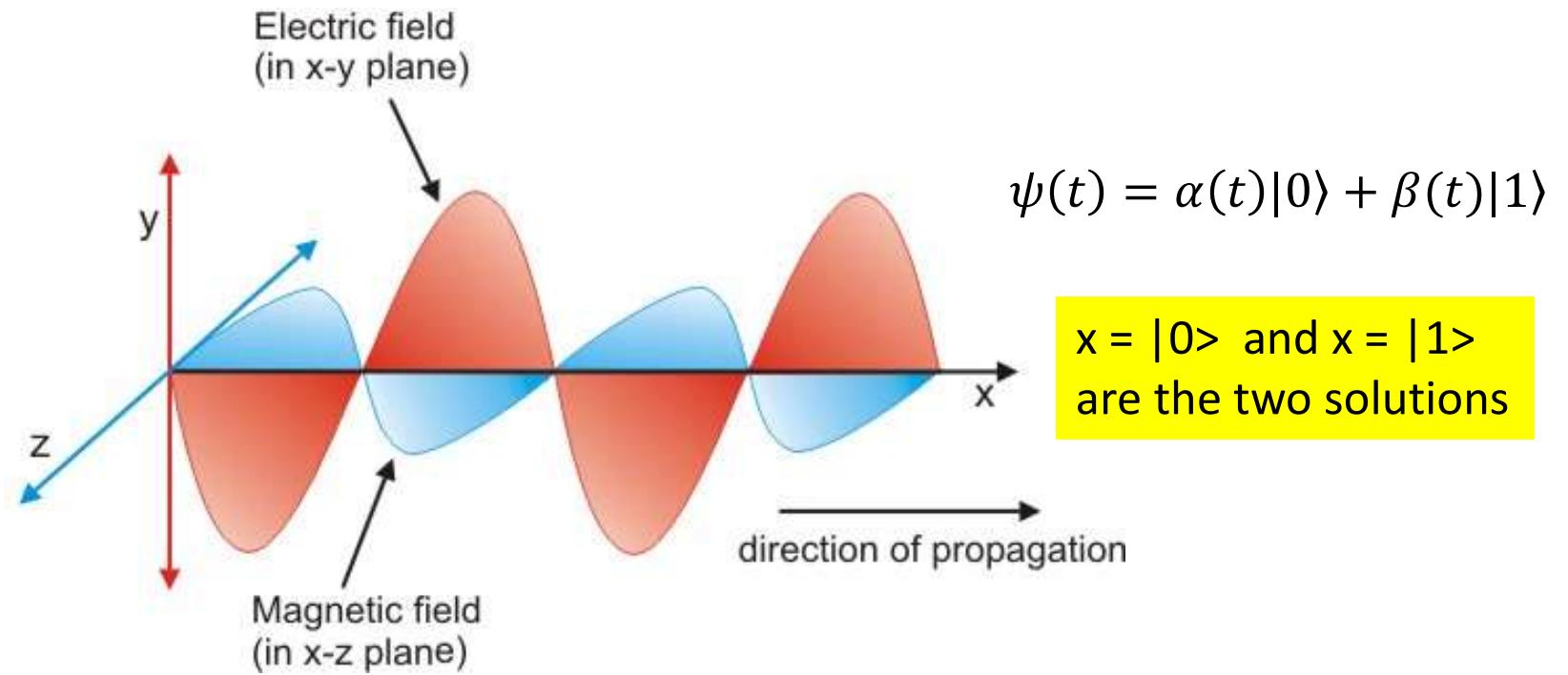
- When you are not looking for it, it is *actually* simultaneously spinning both ways
 - It is in a ***superposition*** of both states
- $|\alpha|^2$ and $|\beta|^2$ are the probability of *finding* the electron in each spin state

The polarization of light



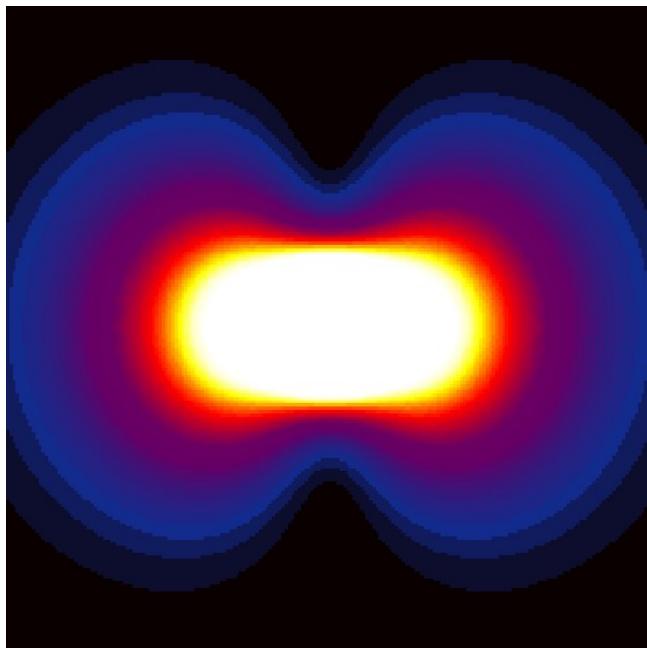
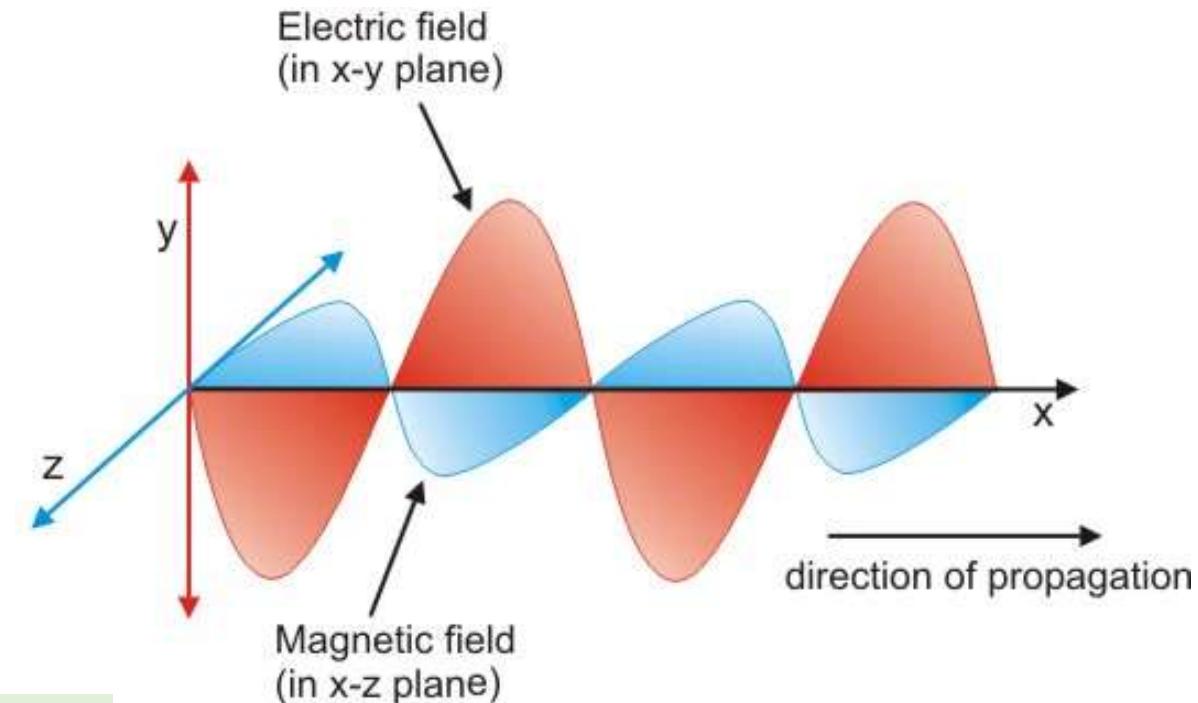
- How do polarizing glasses work?
 - Send through the component of the E/M fields that are aligned with the polarizer

The polarization of light



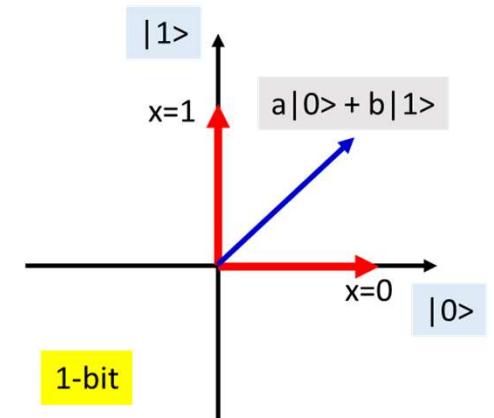
- The light actually exists in both polarizations at the same time
 - *It is in a superposition of both polarizations*
- The polarizing glass ‘observes’ (or *measures*) the photons, and they end up as one or the other

Quantum systems

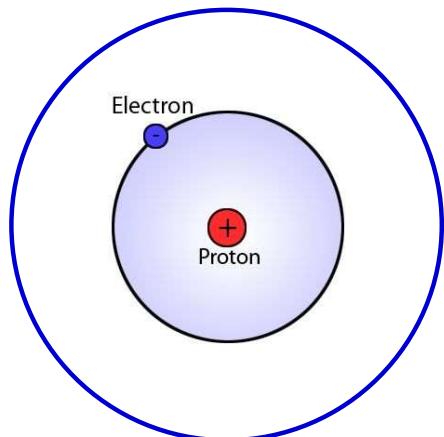
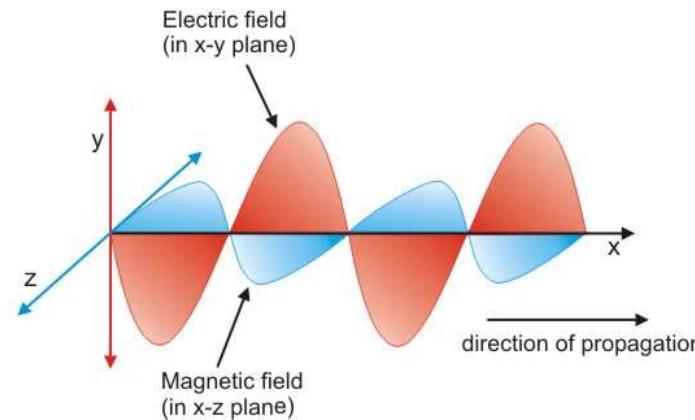
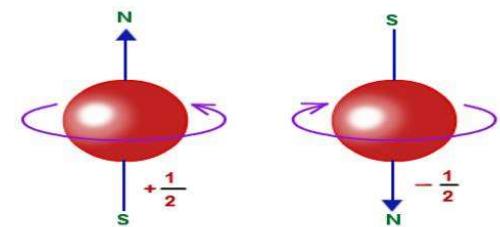


$$\psi(t) = \alpha(t)|0\rangle + \beta(t)|1\rangle$$

- Quantum systems naturally exist in a superposition of multiple values
 - If we assign each value to a bit value (or bit pattern), we get a quantum computing platform

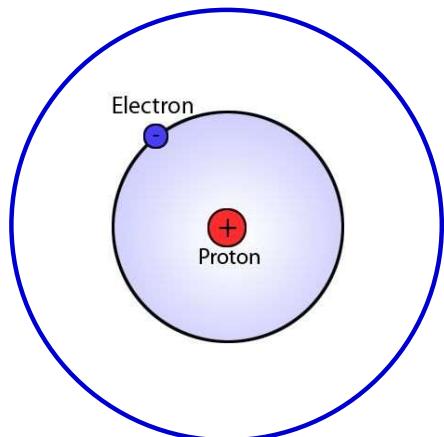
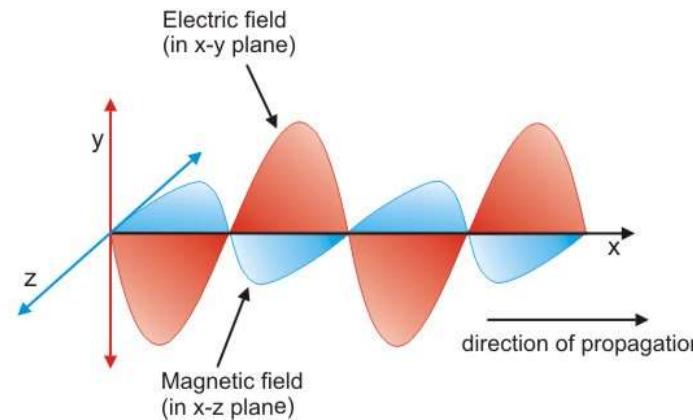
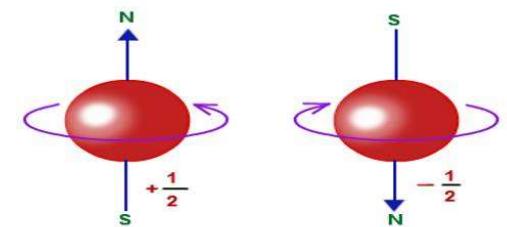


Recap: Implementing the qubit



- Cannot use classical physics
 - Will require computers with exponential amounts of memory to represent even a small number of bits

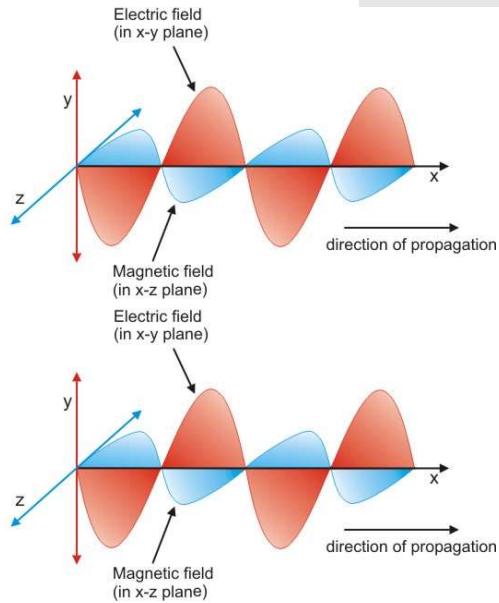
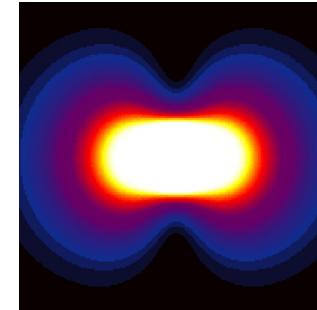
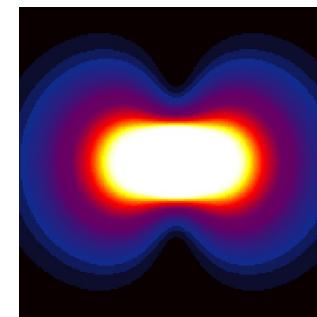
Recap: Implementing the qubit



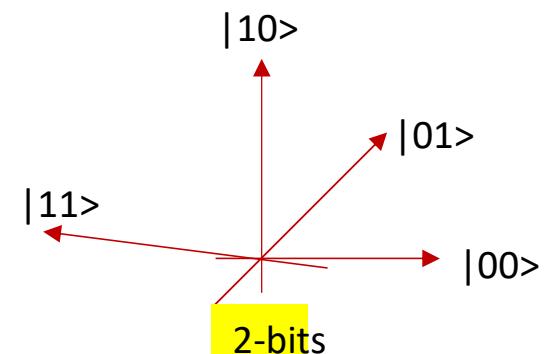
- Cannot use classical physics
 - Will require computers with exponential amounts of memory to represent even a small number of bits
- Use quantum physics
 - Derived from Schrodinger's equation: $i\hbar \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle$
 - Every particle is a wave that exists in all states $|\psi(t,x)\rangle$ simultaneously
 - $|\psi(t,x)\rangle|^2$ = probability of finding the system in configuration x at time t when you measure it
 - Use quantum properties of quantum particles to implement the bit
 - E.g: The energy level of an electron
 - E.g: The spin of an electron
 - E.g: The polarization of a photon

Multiple bits

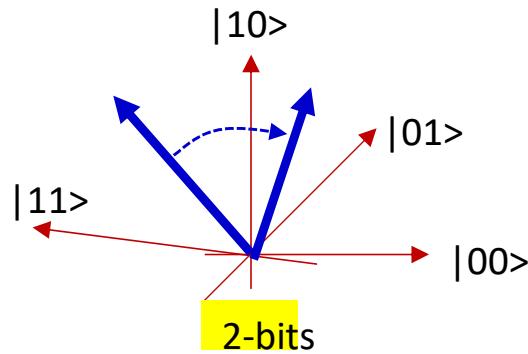
$$a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$



- Increasing the number of bits only takes increasing the number of basic quantum units

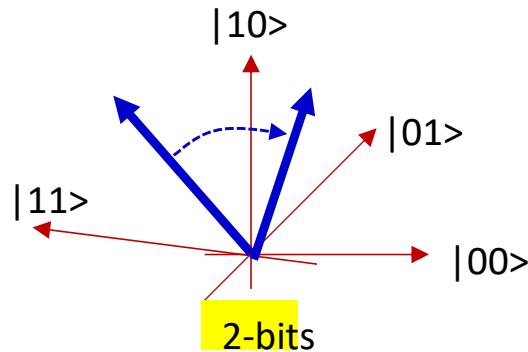


Practical implementation



- Simply use a collection of quantum bits
 - Will simultaneously represent all states
- What is missing?

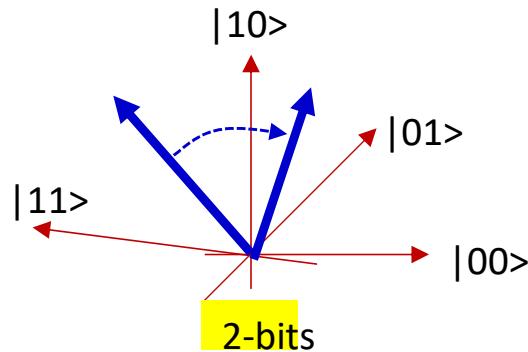
Practical implementation



- Simply use a collection of quantum bits
 - Will simultaneously represent all states
- What is missing?
 - How do you implement the functions?
 - Invertible rotations $ih \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle$

But first you must design the functions (we will see how)

Practical implementation



- Simply use a collection of quantum bits
 - Will simultaneously represent all states
- What is missing?
 - How do you implement the functions?
 - Invertible rotations $i\hbar \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle$
 - How do you measure the output vectors?

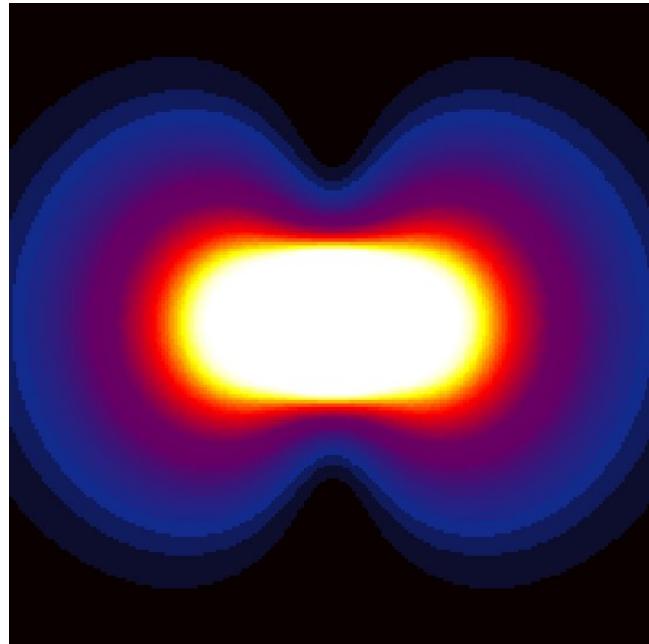
The wave function for any particle predicts its probability

$$\psi(t, x)$$

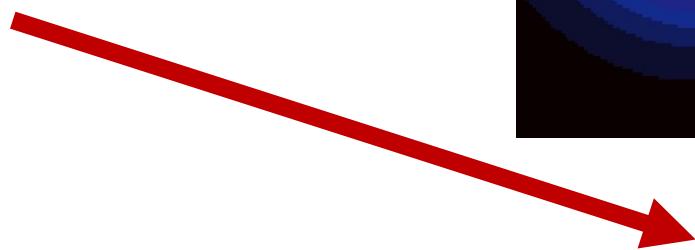
$|\psi(t, x)|^2$ is the probability that the system will be *found to be* in configuration x at time t , if we were to ‘measure’ it!!

- What does this mean
- Many (possibly an infinity of) solutions exist to the equation
 - One for each x
 - $\psi(t, x)$ is a complex value associated with each solution x at time t
- But if you were to try to *observe* it, only one of these solutions would be observed
 - The probability of observing solution x at time t is given by $|\psi(t, x)|^2$

The hydrogen atom



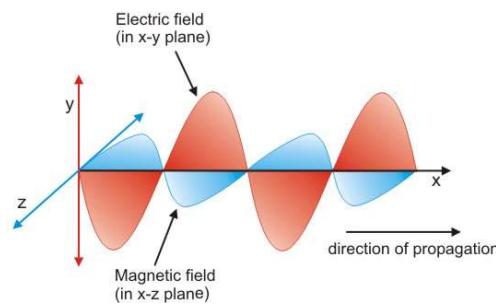
$$\psi(t) = \alpha(t)|0\rangle + \beta(t)|1\rangle$$



- $|\alpha|^2$ and $|\beta|^2$ are the probability of **finding** the electron at each location in the hydrogen molecule
 - When you are not looking for it, it is *actually* simultaneously at both atoms

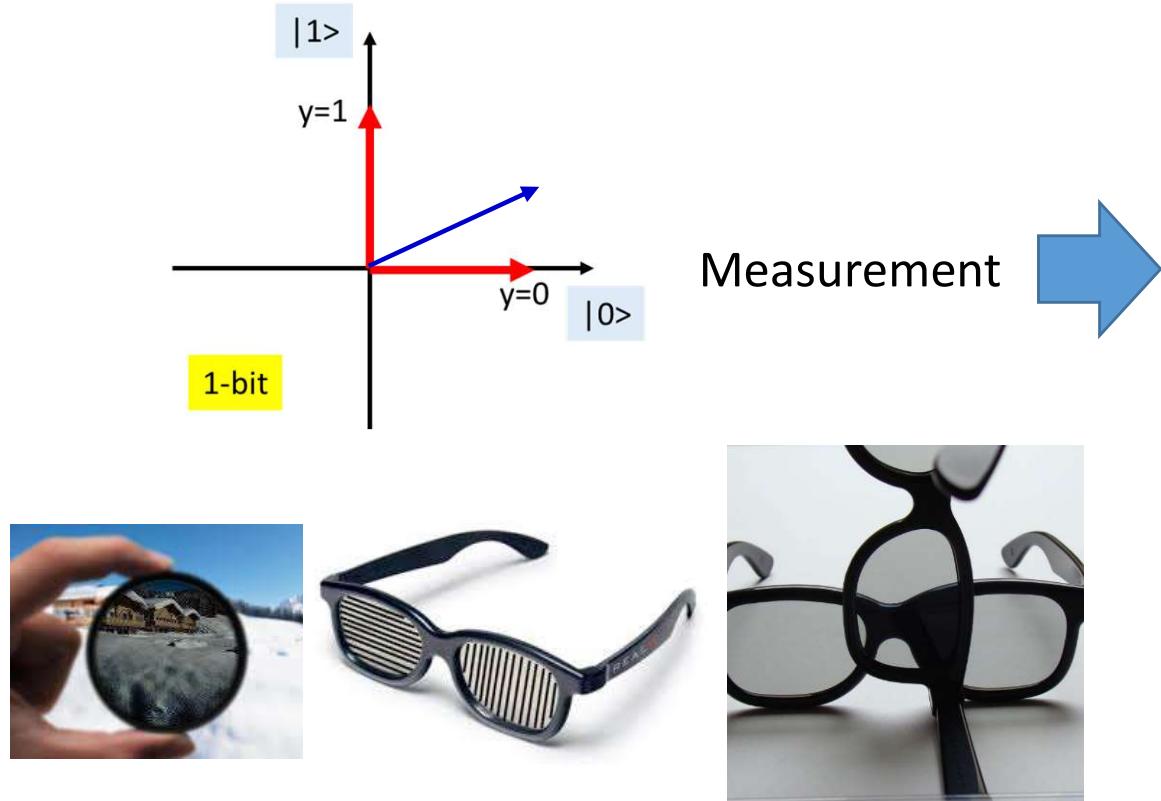
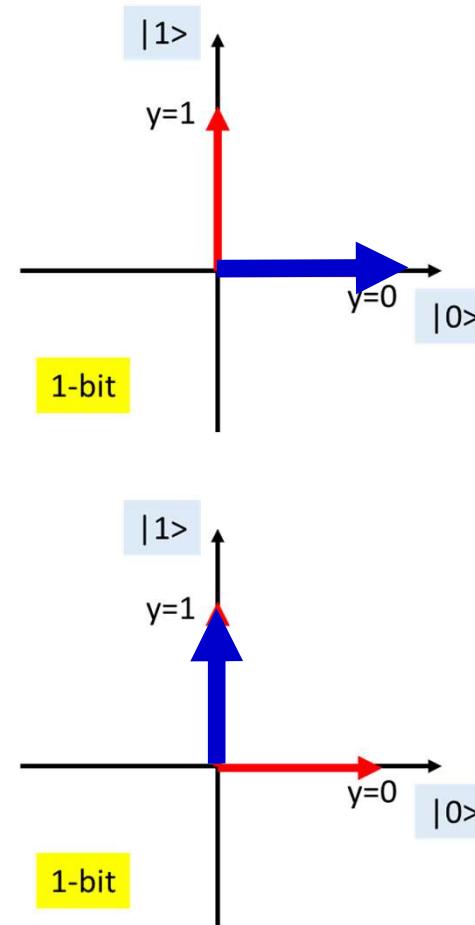
The problem with measurement

- **Reality Doesn't Exist Until We Measure It, Quantum Experiment Confirms**
- <https://www.sciencealert.com/reality-doesn-t-exist-until-we-measure-it-quantum-experiment-confirms>



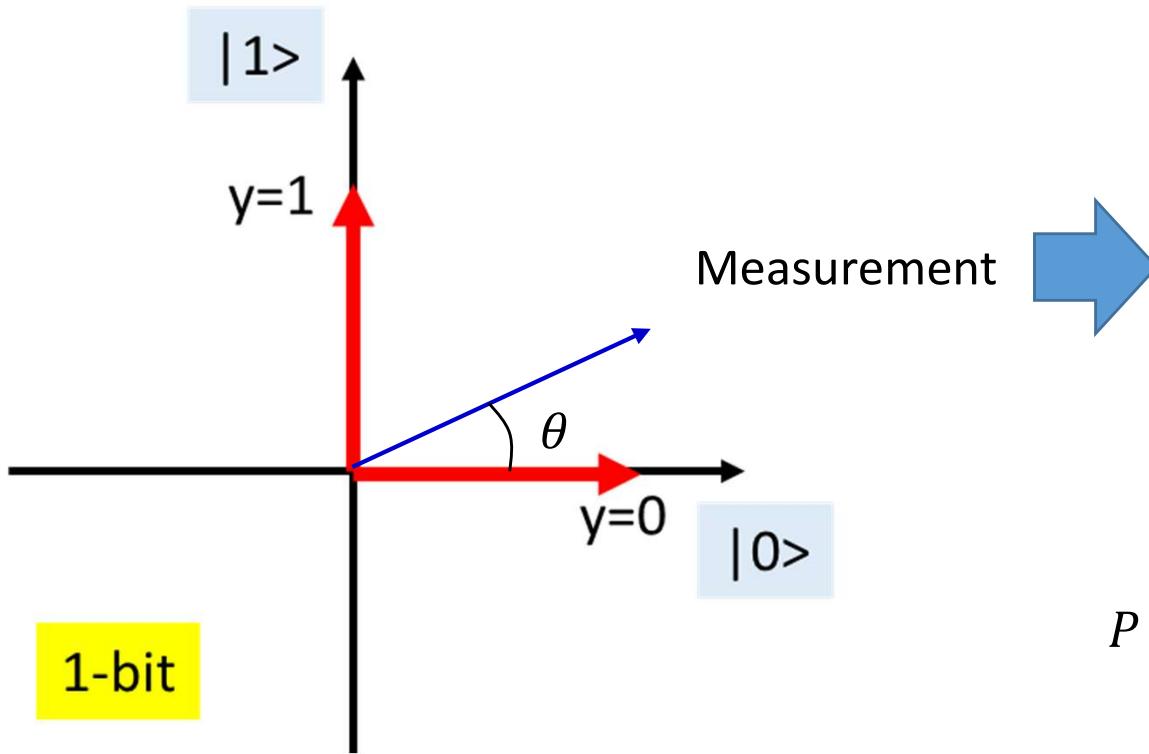
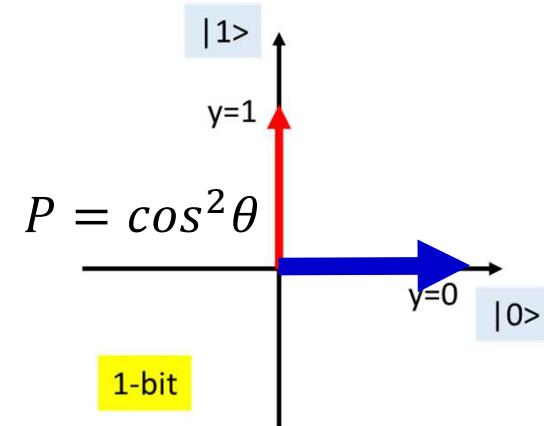
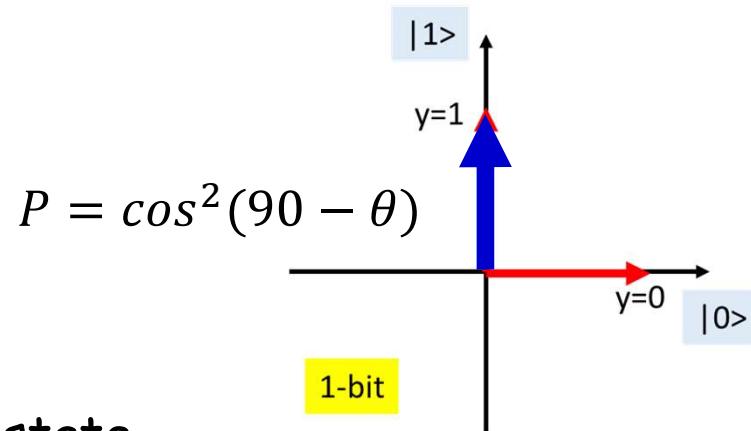
- Measuring a quantum variable “collapses” it

Measurement



- Measuring the output *collapses* the vector to one of the states
 - Bit pattern
- Which one

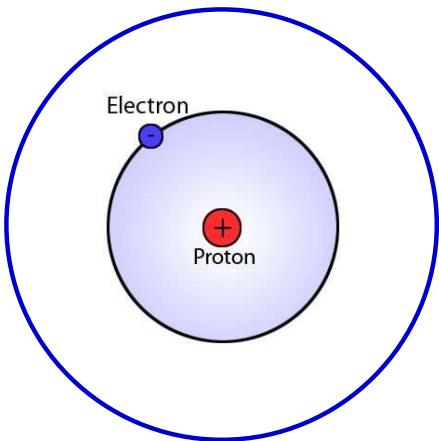
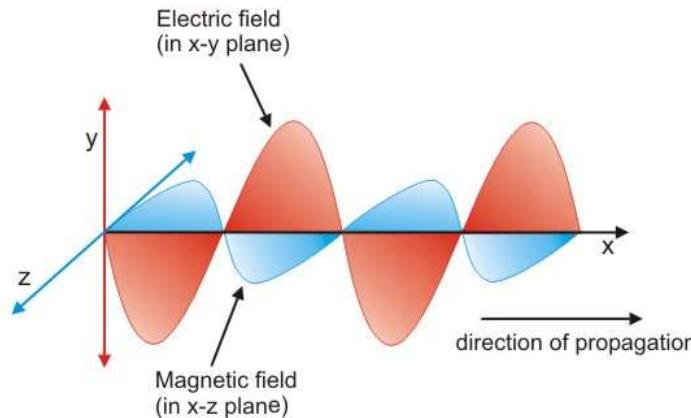
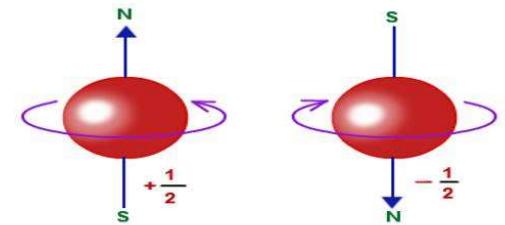
Measurement



You can never observe the superposed state
Any attempt at observation will show up as one state or the other!
"collapsing"

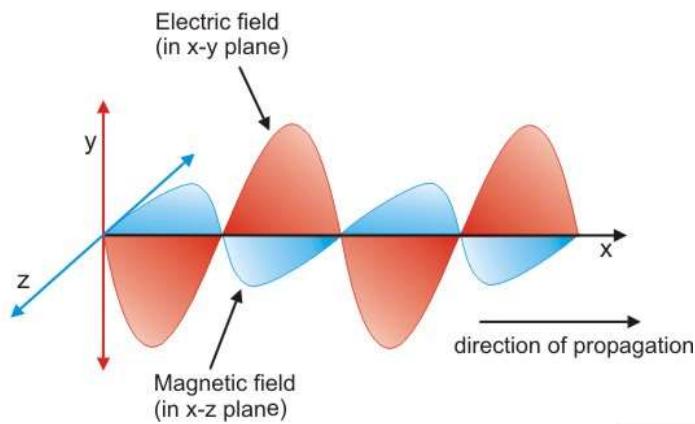
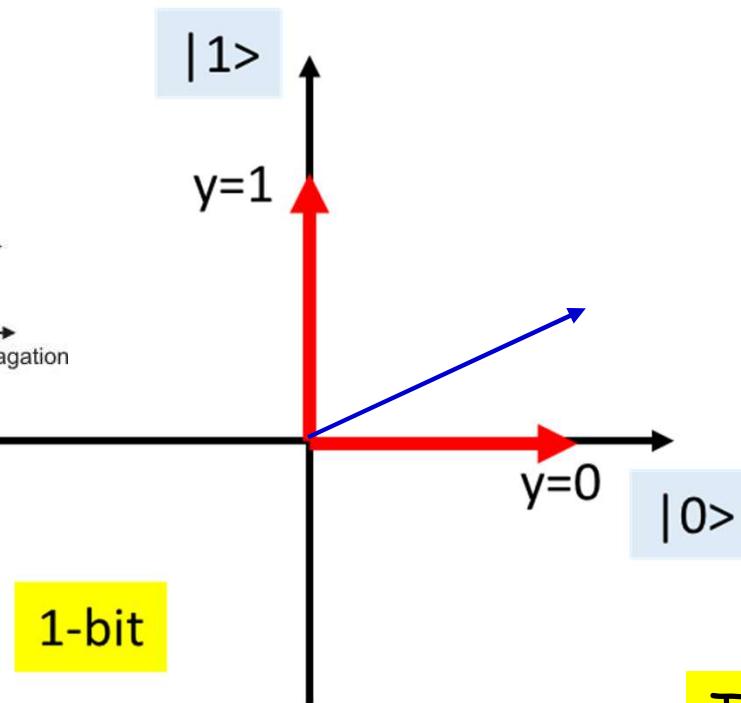
The probability of 'collapsing' to a state depends on the angle of the 'phasor' (the superposed state)

The physical Qubit



- Hydrogen atom electron:
 - Ground state = $|0\rangle$, excited state = $|1\rangle$
- Photon polarization
 - Horizontal = $|0\rangle$, vertical = $|1\rangle$
- Electron spin
 - NS = $|0\rangle$, SN = $|1\rangle$

The physical Qubit

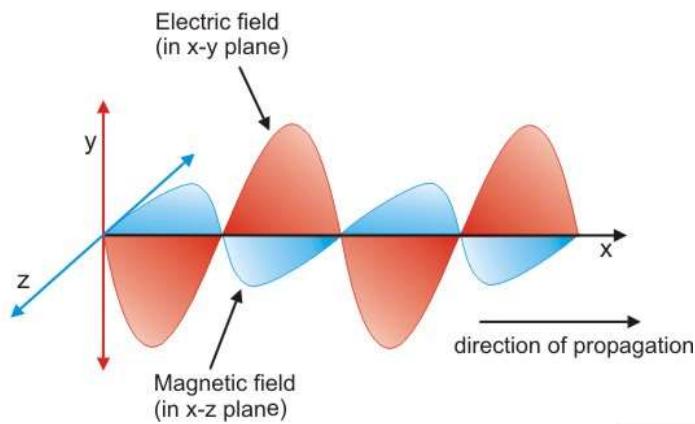
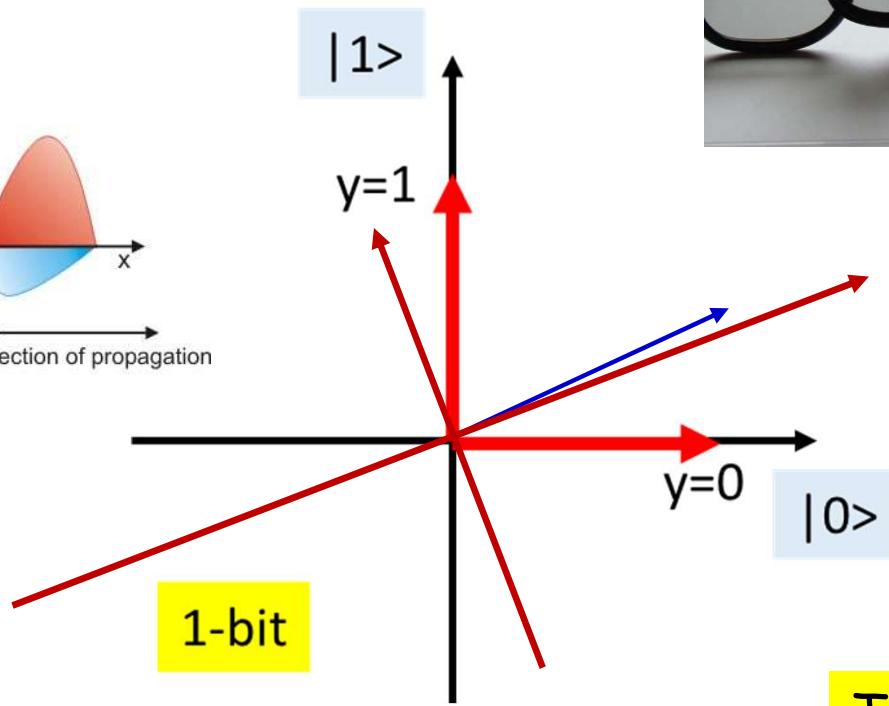


- Hydrogen atom electron:
 - Ground state = $|0\rangle$, excited state = $|1\rangle$
- Photon polarization
 - Horizontal = $|0\rangle$, vertical = $|1\rangle$
- Electron spin
 - NS = $|0\rangle$, SN = $|1\rangle$

The 'states' are *orthogonal directions* in this space of the wavefunction

Also called 'bases'

The physical Qubit



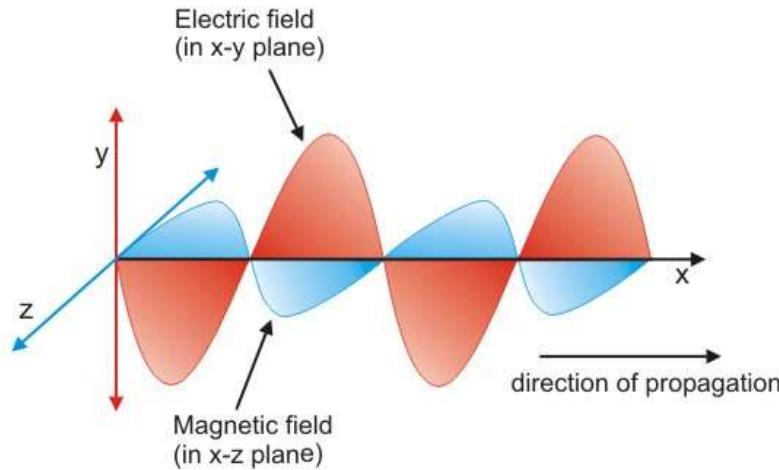
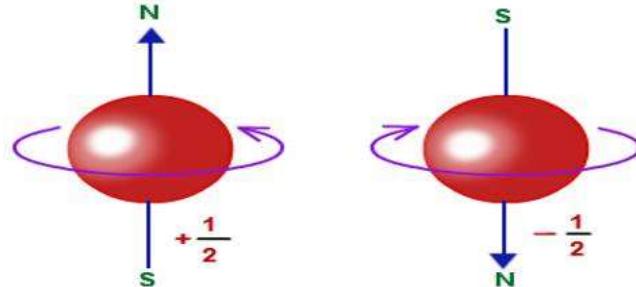
- Hydrogen atom electron:
 - Ground state = $|0\rangle$, excited state = $|1\rangle$
- Photon polarization
 - Horizontal = $|0\rangle$, vertical = $|1\rangle$
- Electron spin
 - NS = $|0\rangle$, SN = $|1\rangle$

The 'states' are *orthogonal directions* in this space of the wavefunction

Also called 'bases'

Note: The definition of your "bases" is a matter of convention

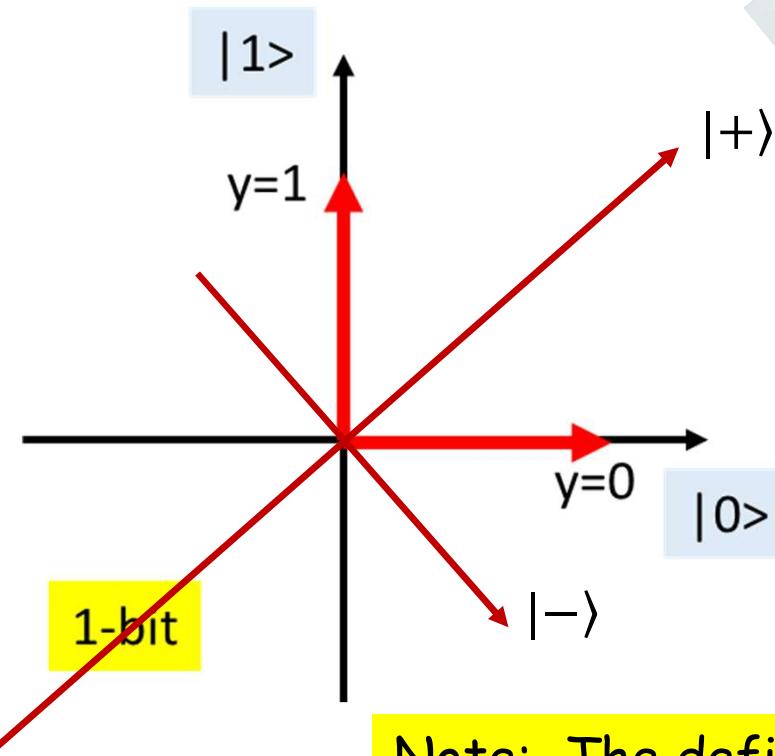
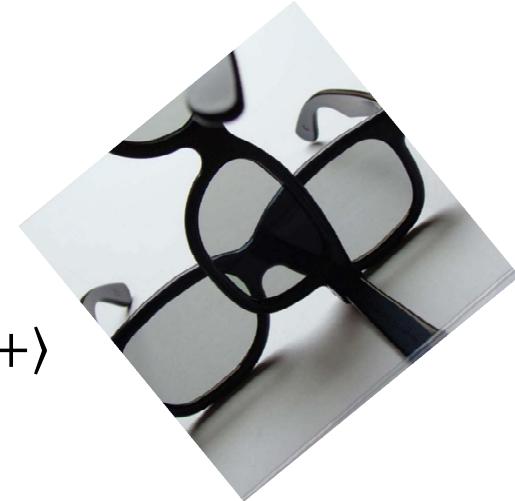
The physical Qubit



- Hydrogen atom electron:
 - Ground state = $|0\rangle$, excited state = $|1\rangle$
- Photon polarization
 - Horizontal = $|0\rangle$, vertical = $|1\rangle$
- Electron spin
 - $NS = |0\rangle$, $SN = |1\rangle$

Note: The definition of your "bases" is a matter of convention

The physical Qubit



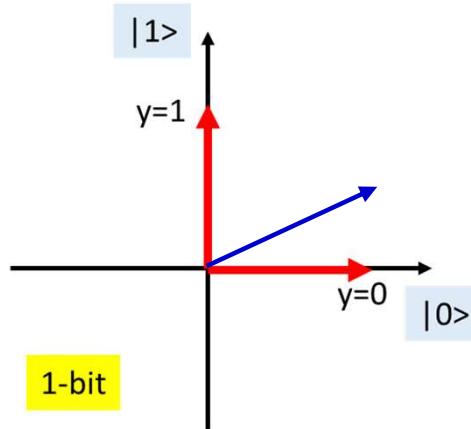
- Hydrogen atom electron:
 - Ground state = $|0\rangle$, excited state = $|1\rangle$
- Photon polarization
 - Horizontal = $|0\rangle$, vertical = $|1\rangle$
- Electron spin
 - NS = $|0\rangle$, SN = $|1\rangle$

Note: The definition of your "bases" is a matter of convention

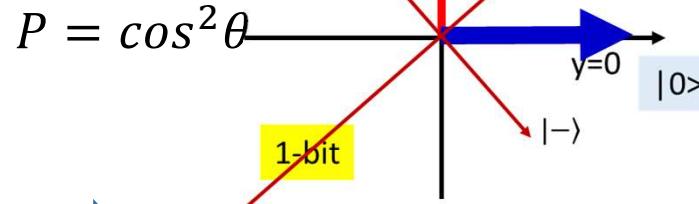
You can have multiple bases
Designate one as
"canonical" and the
rest are oriented w.r.t it

The plus/minus bases are
commonly invoked

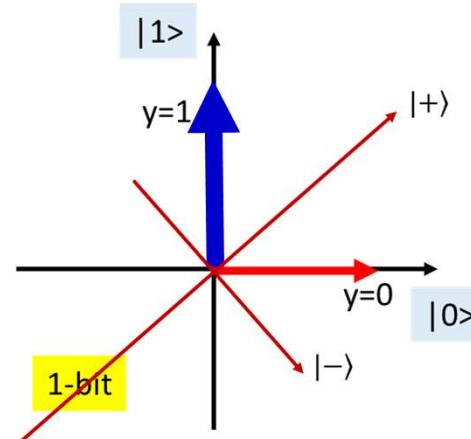
Measurement is not absolute



Measurement



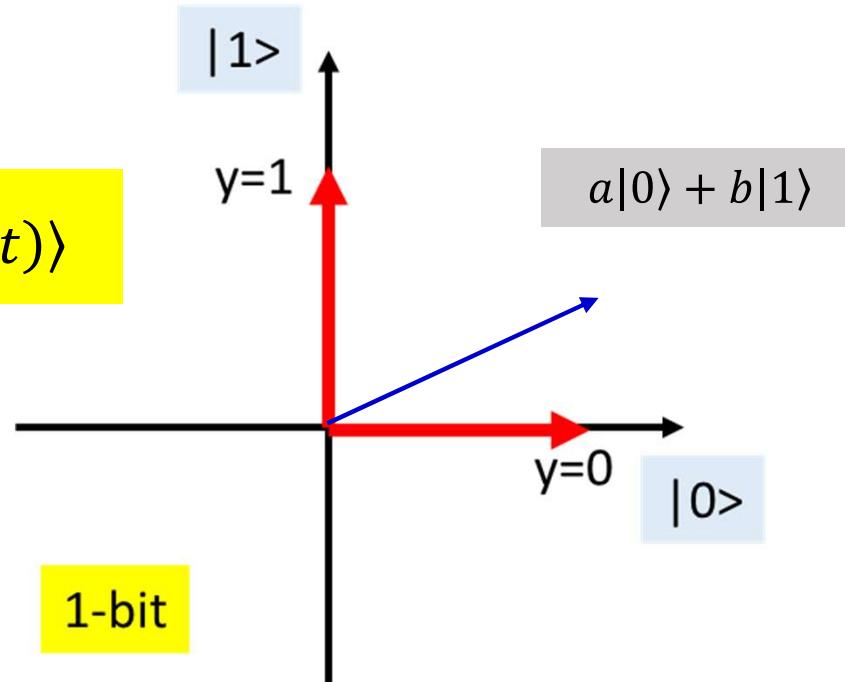
$$P = \cos^2(90 - \theta)$$



- Collapsing the vector according to one basis can still keep it indeterminate for other bases!
 - We will use this factor

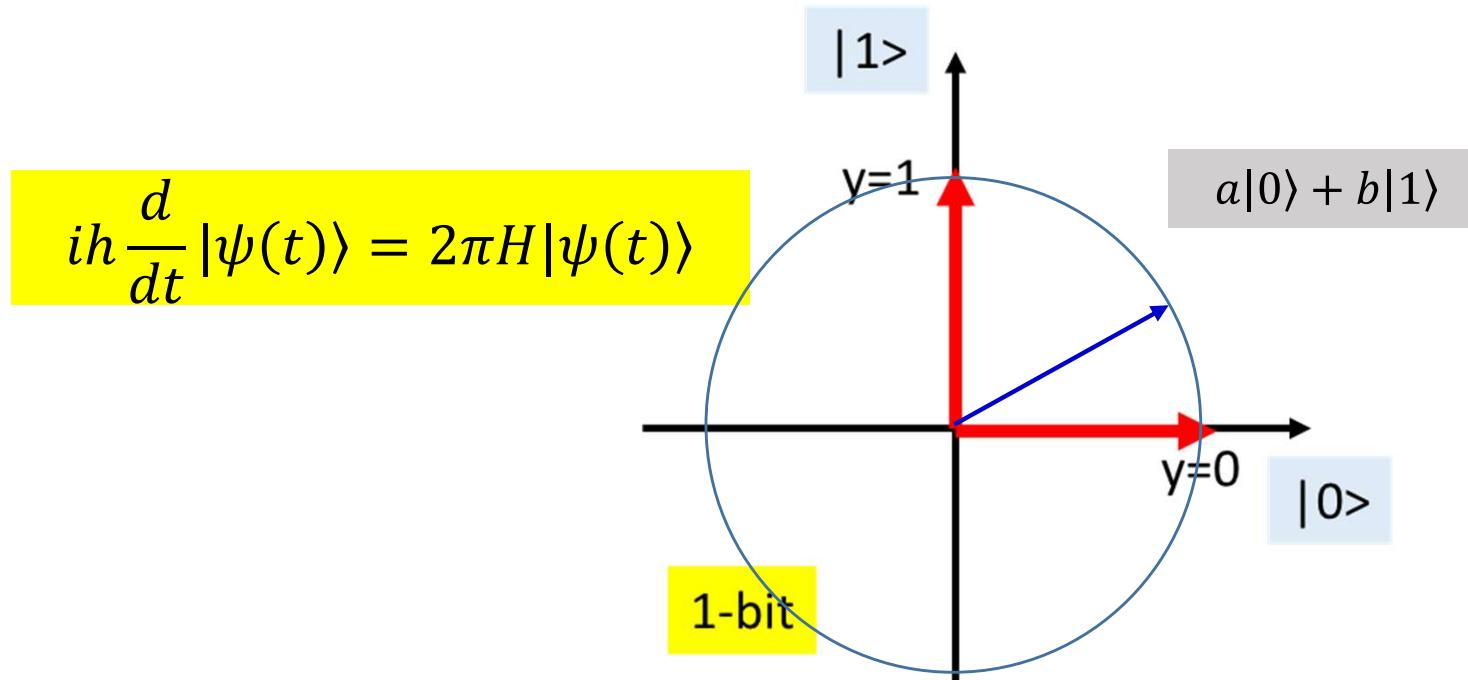
It's complex, but not complicated

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = 2\pi H |\psi(t)\rangle$$



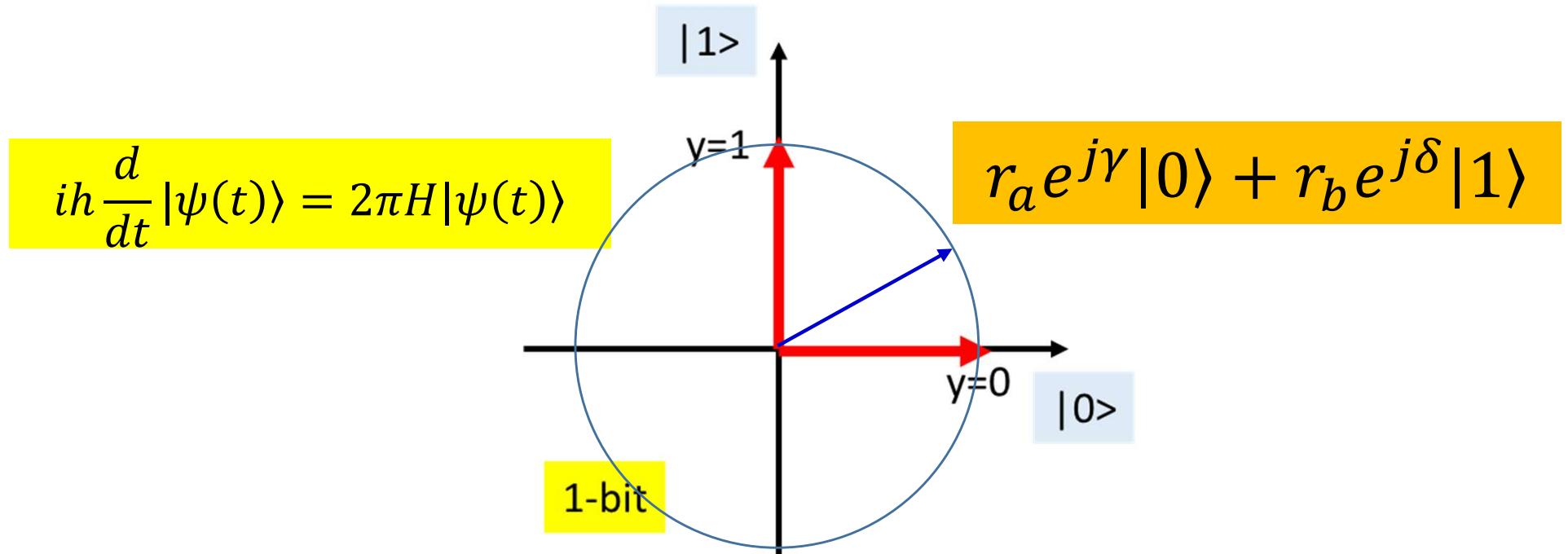
- The “weights” a and b are actually complex variables
 - Because Schroedinger’s equation describes them as complex
- This simple visualization is *wrong*
 - Its missing two dimensions
 - The imaginary components of a and b

Restrictions on the weights



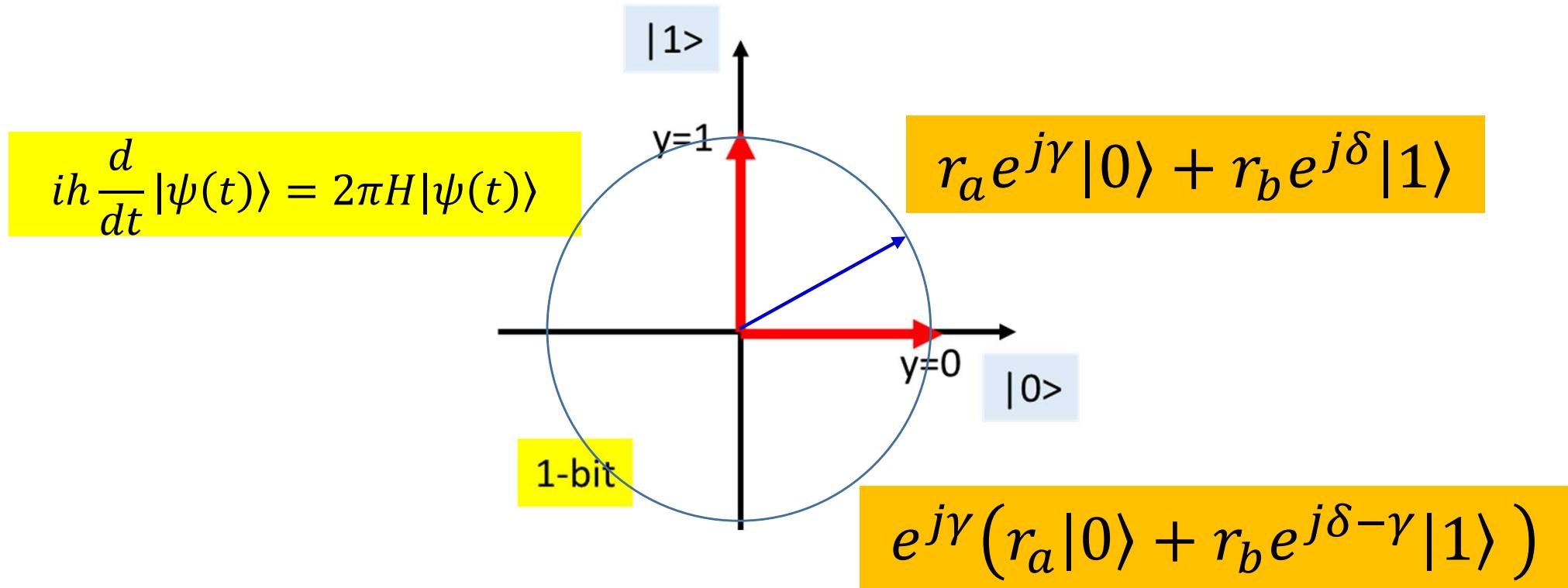
- $|a|^2 + |b|^2 = 1$
 - The qubits live on the surface of a hypersphere
- $P(|0\rangle) = |a|^2, P(|1\rangle) = |b|^2$
- $a = r_a e^{j\gamma}, b = r_b e^{j\delta}$
 - What is the relation between r_a and r_b

Restrictions on the weights



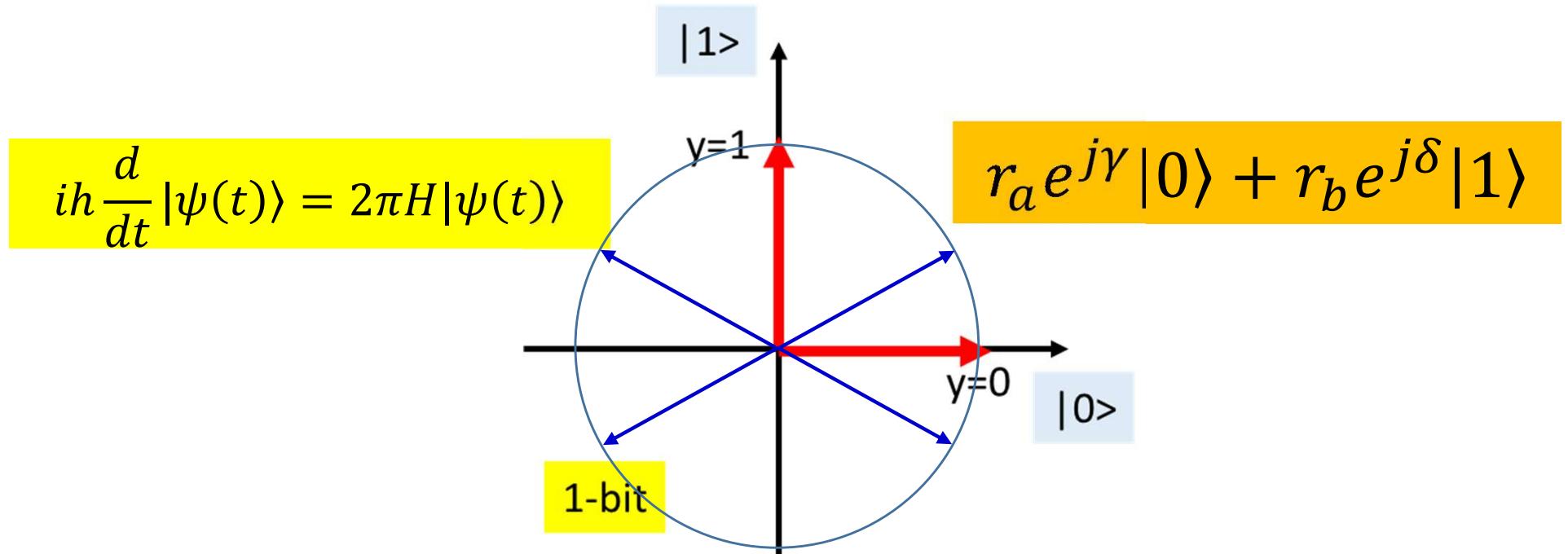
- $|a|^2 + |b|^2 = 1$
 - The qubits live on the surface of a hypersphere
- $P(|0\rangle) = |a|^2, P(|1\rangle) = |b|^2$
- $a = r_a e^{j\gamma}, b = r_b e^{j\delta}$
 - What is the relation between r_a and r_b

Restrictions on the weights



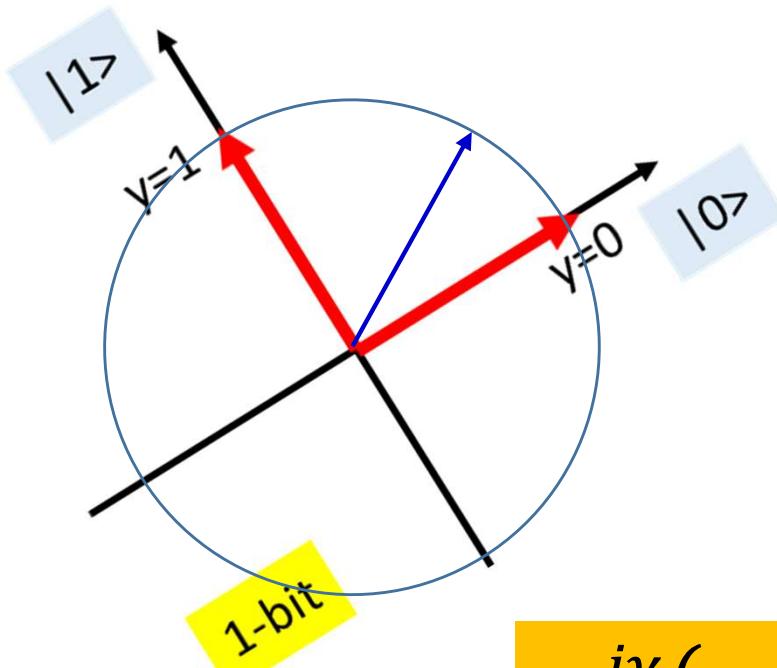
- $|a|^2 + |b|^2 = 1$
 - The qubits live on the surface of a hypersphere
- $P(|0\rangle) = |a|^2, P(|1\rangle) = |b|^2$
- $a = r_a e^{j\gamma}, b = r_b e^{j\delta}$
 - What is the relation between r_a and r_b

Something odd



- All of these vectors represent the *same* $P(|0\rangle)$ and $P(|1\rangle)$
- But they're actually different phasors
 - Something we will use all the time

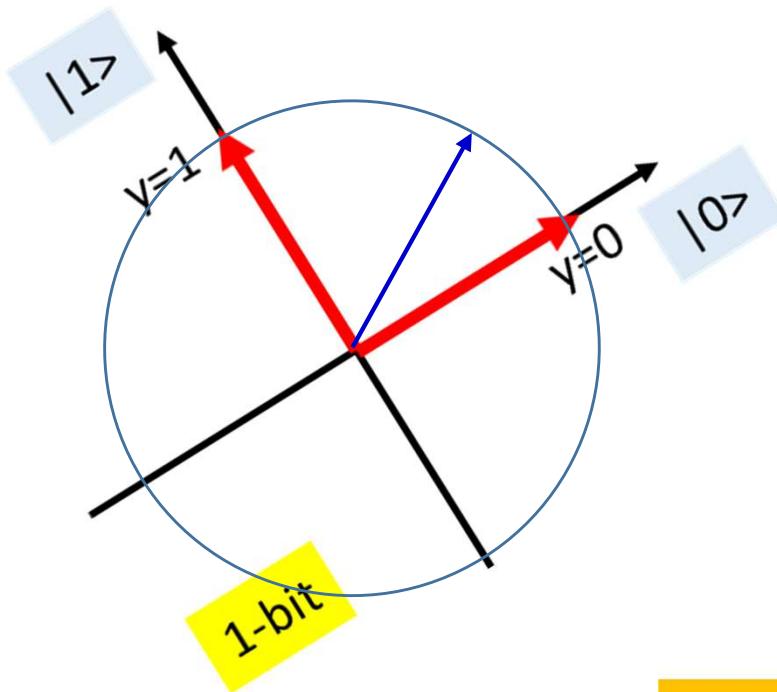
The qubit is rotation invariant



$$e^{j\gamma} (r_a |0\rangle + r_b e^{j(\delta-\gamma)} |1\rangle)$$

- Rotating the space doesn't matter

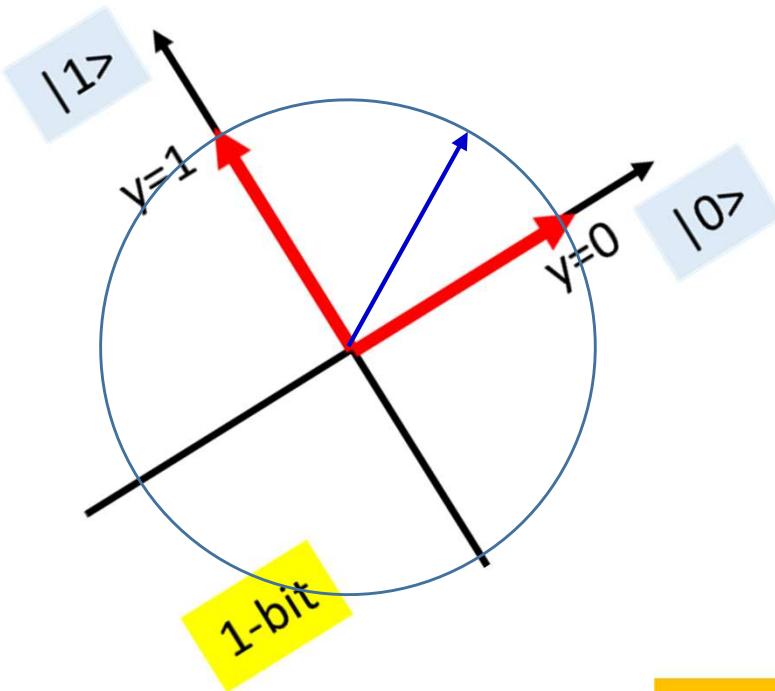
The qubit is rotation invariant



$$r_a |0\rangle + r_b e^{j(\delta-\gamma)} |1\rangle$$

- Rotating the space doesn't matter
 - What is the relation between r_a and r_b

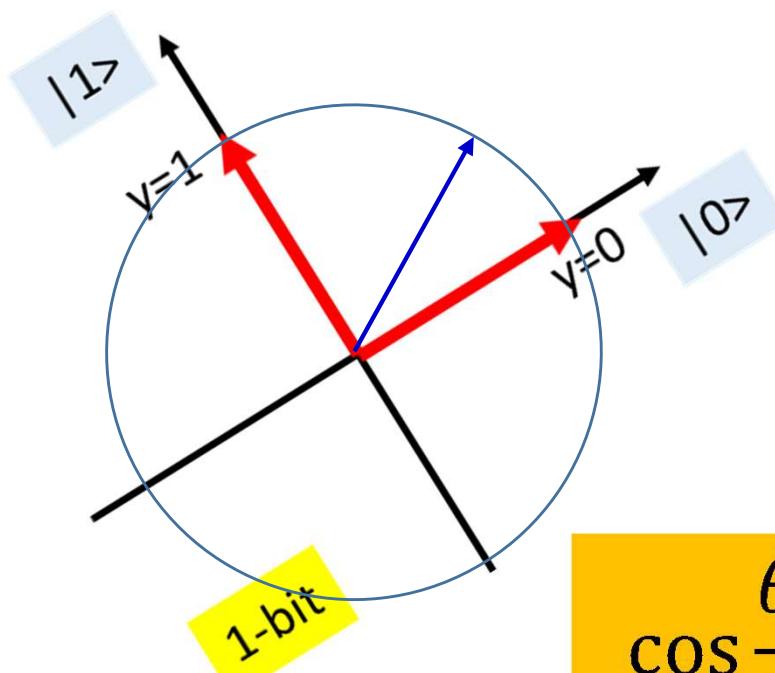
The qubit is rotation invariant



$$r_a |0\rangle + r_b e^{j\phi} |1\rangle$$

- Rotating the space doesn't matter
 - What is the relation between r_a and r_b

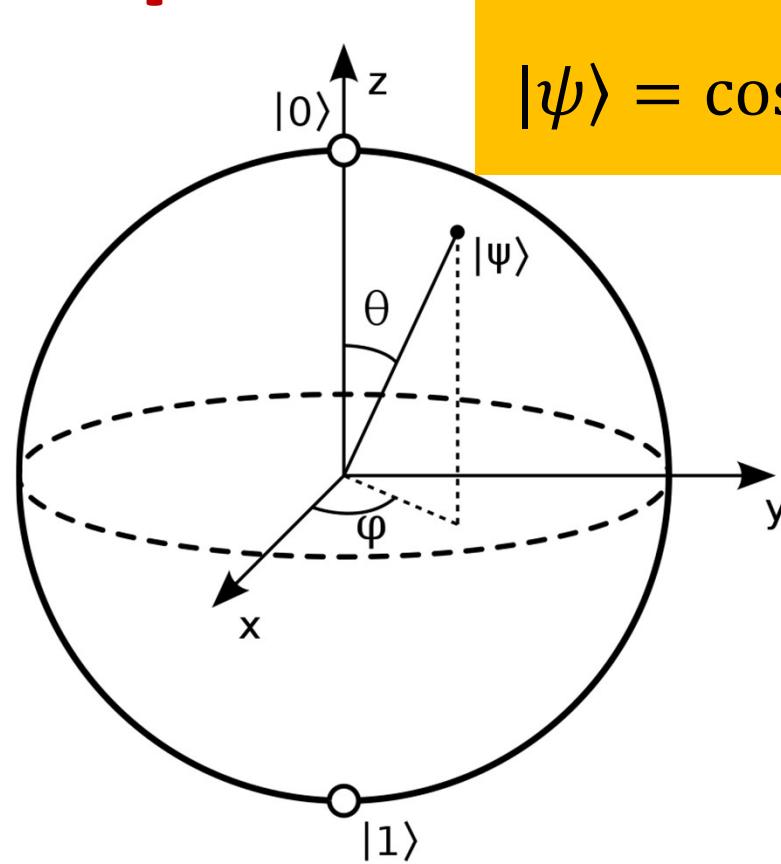
The qubit is rotation invariant



$$\cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} e^{j\phi} |1\rangle$$

- Rotating the space doesn't matter
 - What is the relation between r_a and r_b
- This is now a two-variable representation of two variables!
 - Can be visualized

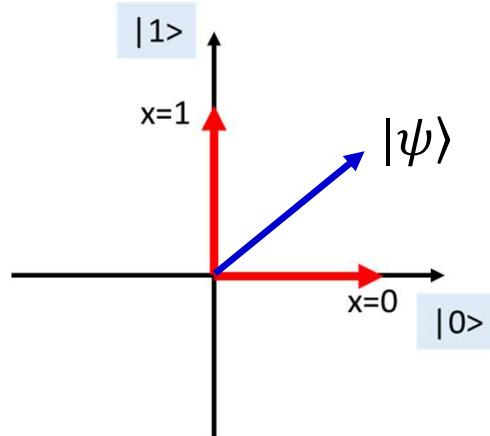
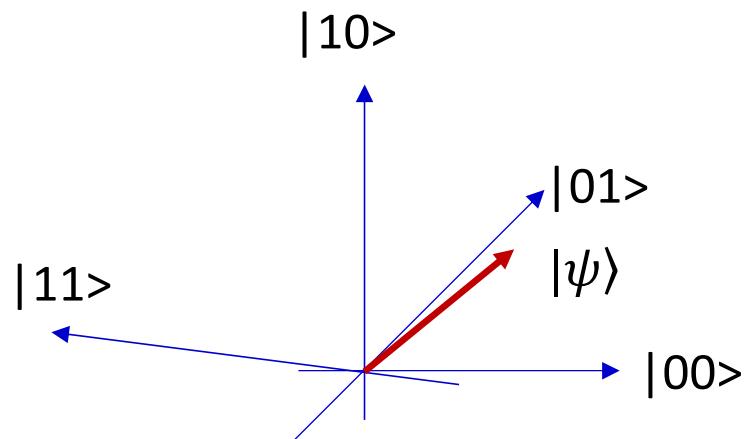
The Bloch Sphere



$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}e^{j\phi}|1\rangle$$

- Visualizing the qubit
 - 2 variable visualization in a 3D space

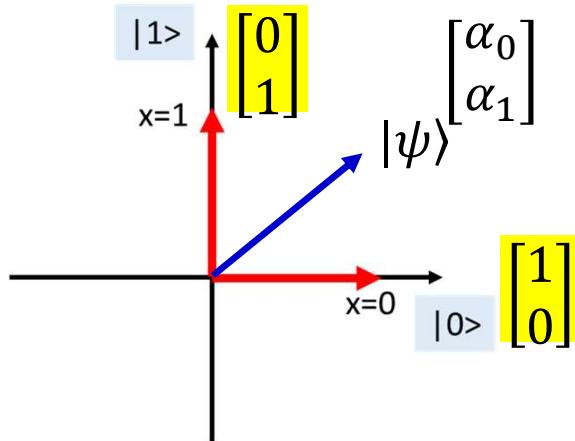
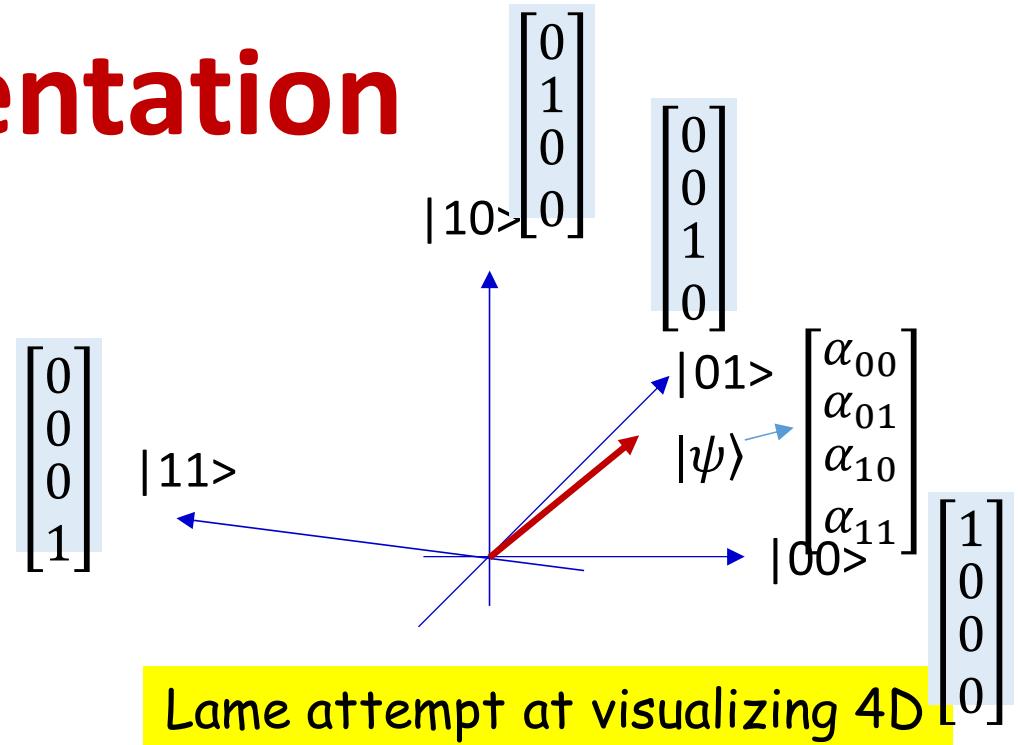
Recap: The physical quantum Qubit



Lame attempt at visualizing 4D

- $|\psi\rangle = \alpha_{00\dots0}|00\dots0\rangle + \alpha_{00\dots1}|00\dots1\rangle + \dots + \alpha_{11\dots1}|11\dots1\rangle$
- The $\alpha_{00\dots0}$ terms are all *complex*!
 - *Thanks Heisenberg*
- Cannot even visualize a single qubit
 - One way to visualize 1 qubit: bloch sphere
 - Doesn't really scale

A vector representation



Lame attempt at visualizing 4D

- Write the phasors as a regular vector
- One-qubit phasor

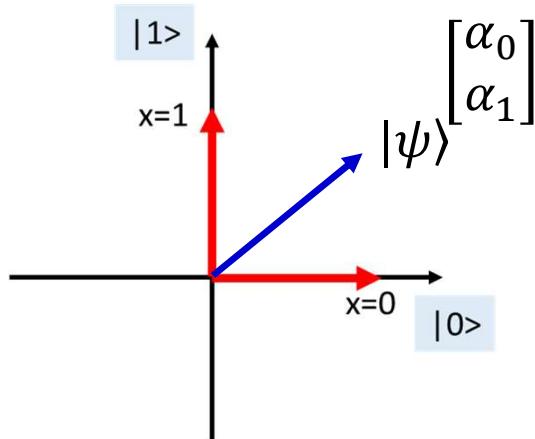
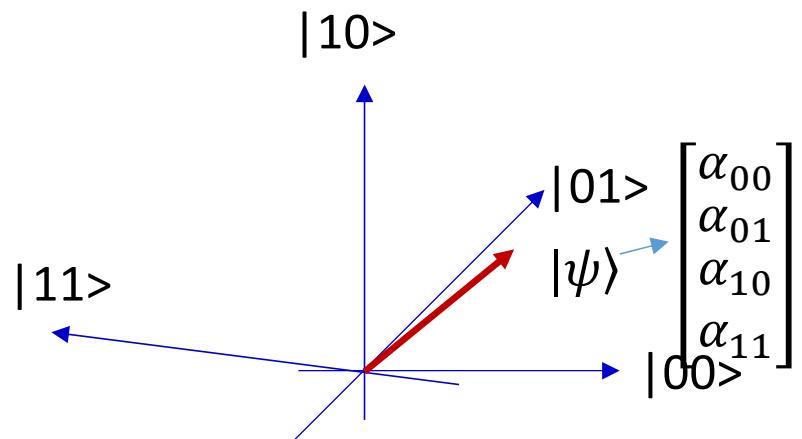
$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$$

- Two qubit phasor

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle = \begin{bmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{bmatrix}$$

- The α terms are all *complex!*
 - *Thanks Heisenberg*
- Note the phasors for the basis bit patterns

The problem of measurement



Lame attempt at visualizing 4D

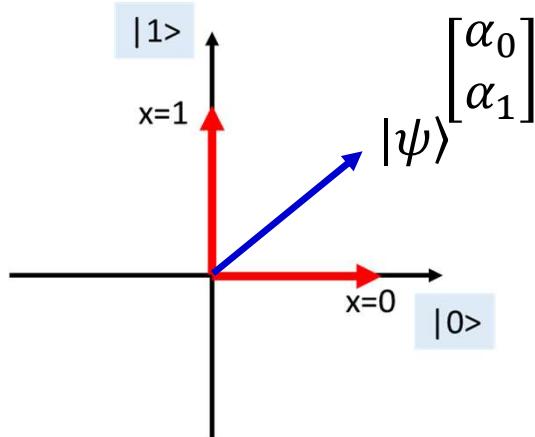
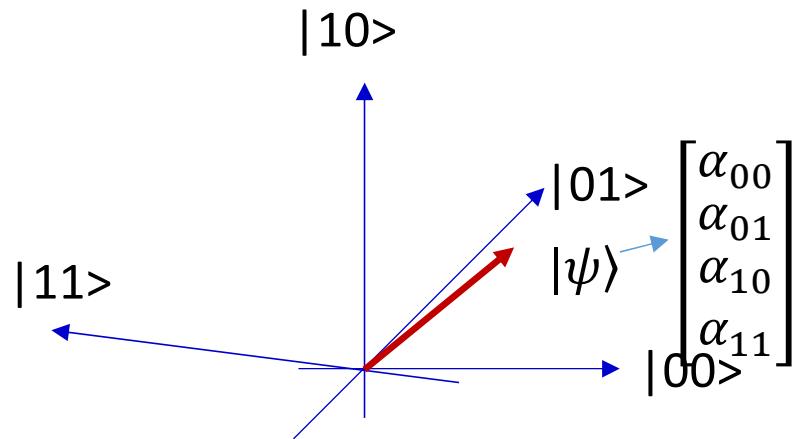
- You cannot measure the phasor
 - It will collapse to one of the bases
- One qubit:

$$\alpha_0|0\rangle + \alpha_1|1\rangle \rightarrow \begin{cases} |0\rangle \text{ with probability } |\alpha_0|^2 \\ |1\rangle \text{ with probability } |\alpha_1|^2 \end{cases}$$

- Two qubits:

$$\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \rightarrow \begin{cases} |00\rangle \text{ with probability } |\alpha_{00}|^2 \\ |01\rangle \text{ with probability } |\alpha_{01}|^2 \\ |10\rangle \text{ with probability } |\alpha_{10}|^2 \\ |11\rangle \text{ with probability } |\alpha_{11}|^2 \end{cases}$$

The problem of measurement



Lame attempt at visualizing 4D

- You cannot measure the phasor
 - It will collapse to one of the bases
- One qubit:

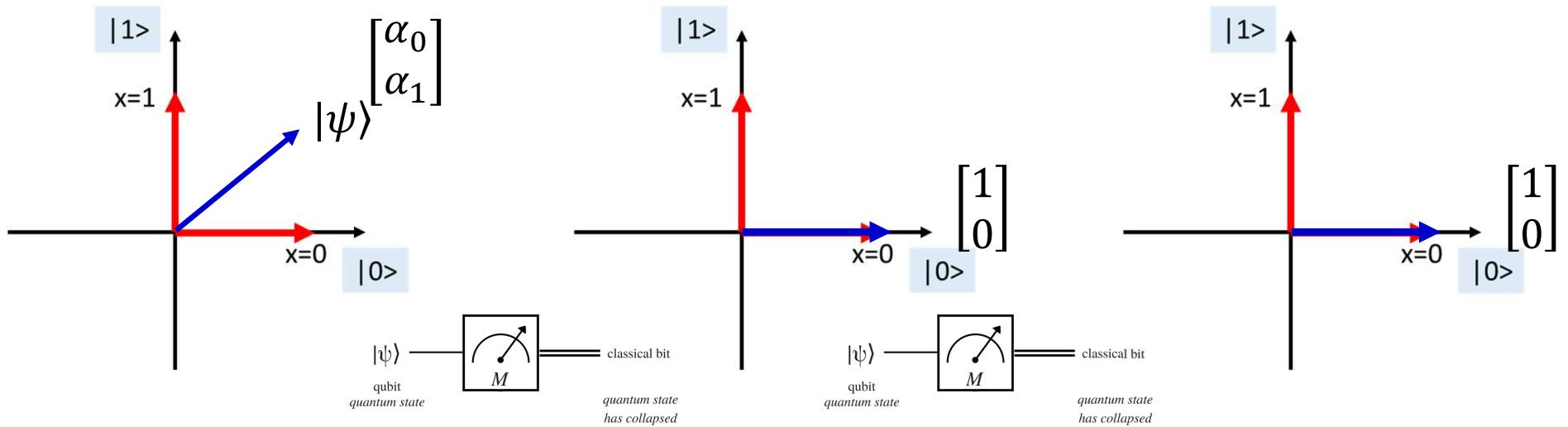
$$\alpha_0|0\rangle + \alpha_1|1\rangle \rightarrow \begin{cases} |0\rangle \text{ with probability } |\alpha_0|^2 \\ |1\rangle \text{ with probability } |\alpha_1|^2 \end{cases}$$

Clearly: $\sum|\alpha|^2 = 1$

- Two qubits:

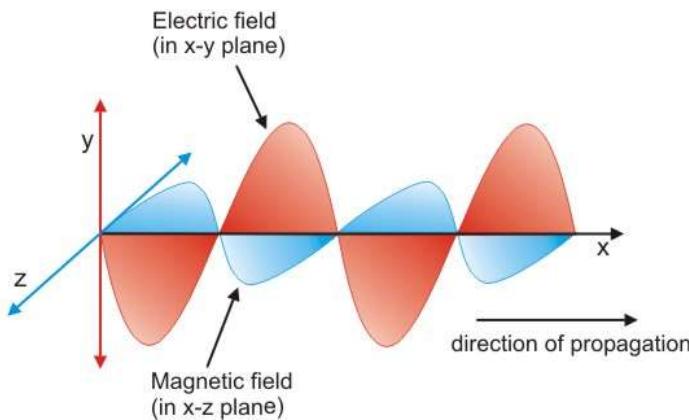
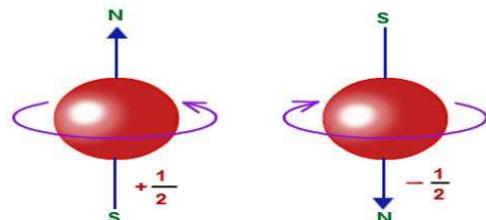
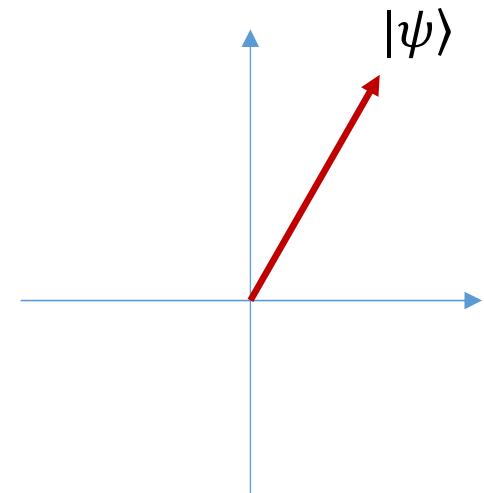
$$\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \rightarrow \begin{cases} |00\rangle \text{ with probability } |\alpha_{00}|^2 \\ |01\rangle \text{ with probability } |\alpha_{01}|^2 \\ |10\rangle \text{ with probability } |\alpha_{10}|^2 \\ |11\rangle \text{ with probability } |\alpha_{11}|^2 \end{cases}$$

Measurement *fixes* the qubit



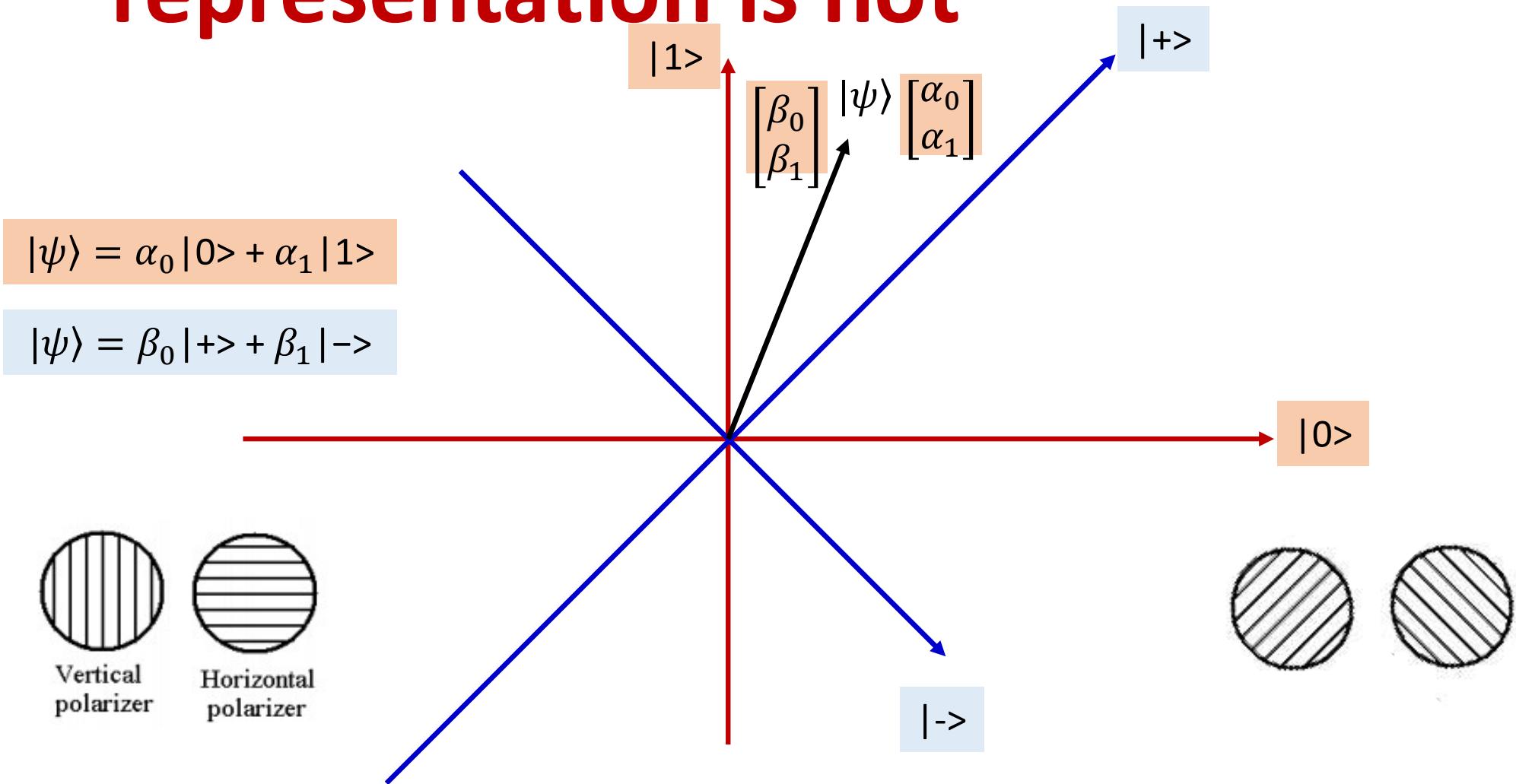
- First measurement: $|\psi\rangle \rightarrow |0\rangle$ with $P = |\alpha_0|^2$
- Second measurement: $|0\rangle \rightarrow |0\rangle$ with $P = 1$
- Third measurement: $|0\rangle \rightarrow |0\rangle$ with $P = 1$
- ...

The phasors are unique, but the representation is not



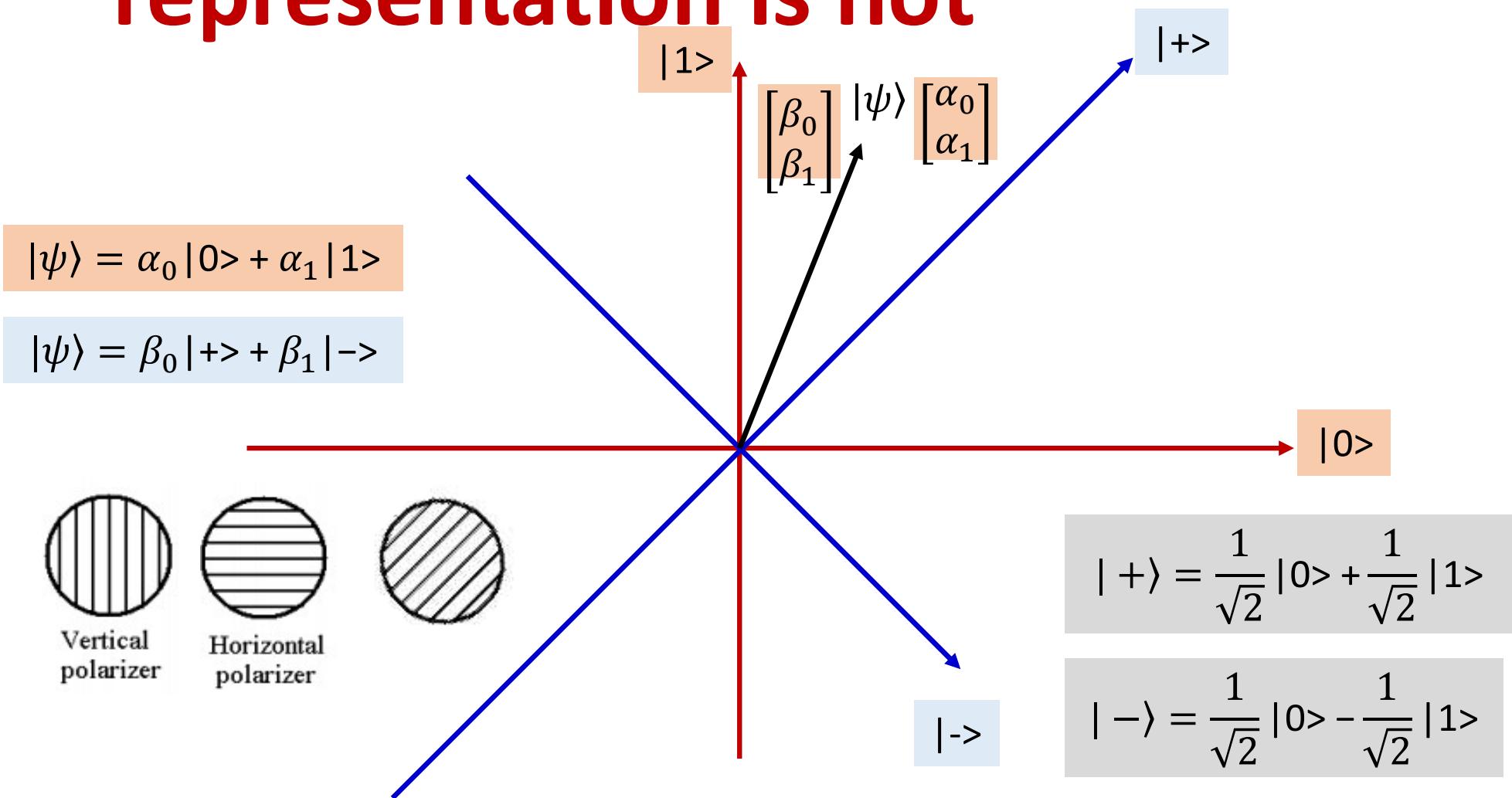
- No absolute definition of direction or sign
 - But the state of the system is well defined!
 - The space is defined, and the direction of the (physical) phasor is well defined
- The actual representation depends on the bases used
 - Only restriction: the bases must be orthogonal

The phasors are unique, the representation is not



- The representation depends on the bases
 - Think orientation of your polarized glasses..

The phasors are unique, the representation is not



- The representation depends on the bases
 - Think orientation of your polarized glasses..

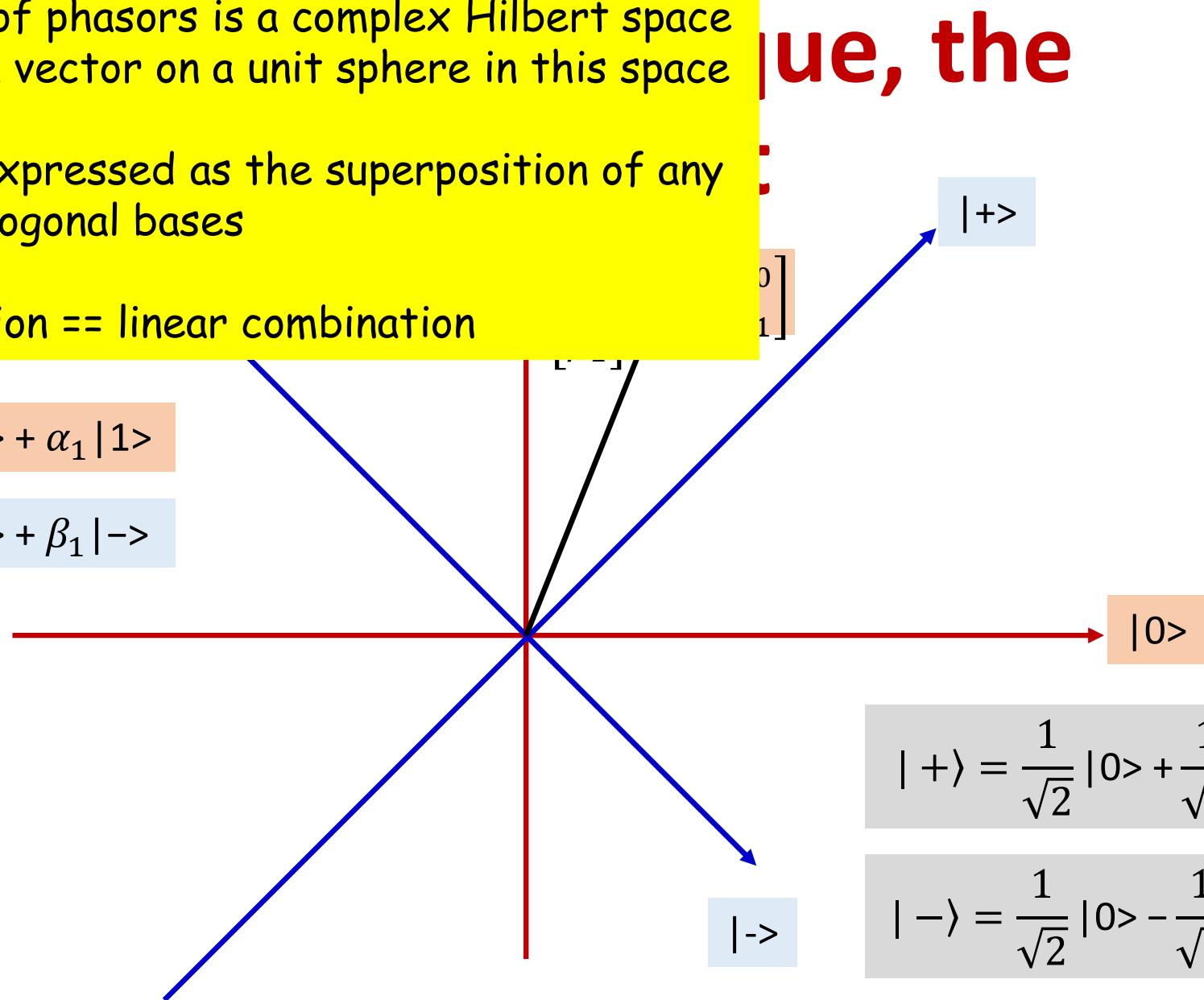
The space of phasors is a complex Hilbert space
A qubit is a vector on a unit sphere in this space

It can be expressed as the superposition of any set of orthogonal bases

Superposition == linear combination

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

$$|\psi\rangle = \beta_0 |+\rangle + \beta_1 |-\rangle$$



$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$

- The representation depends on the bases
 - Think orientation of your polarized glasses..

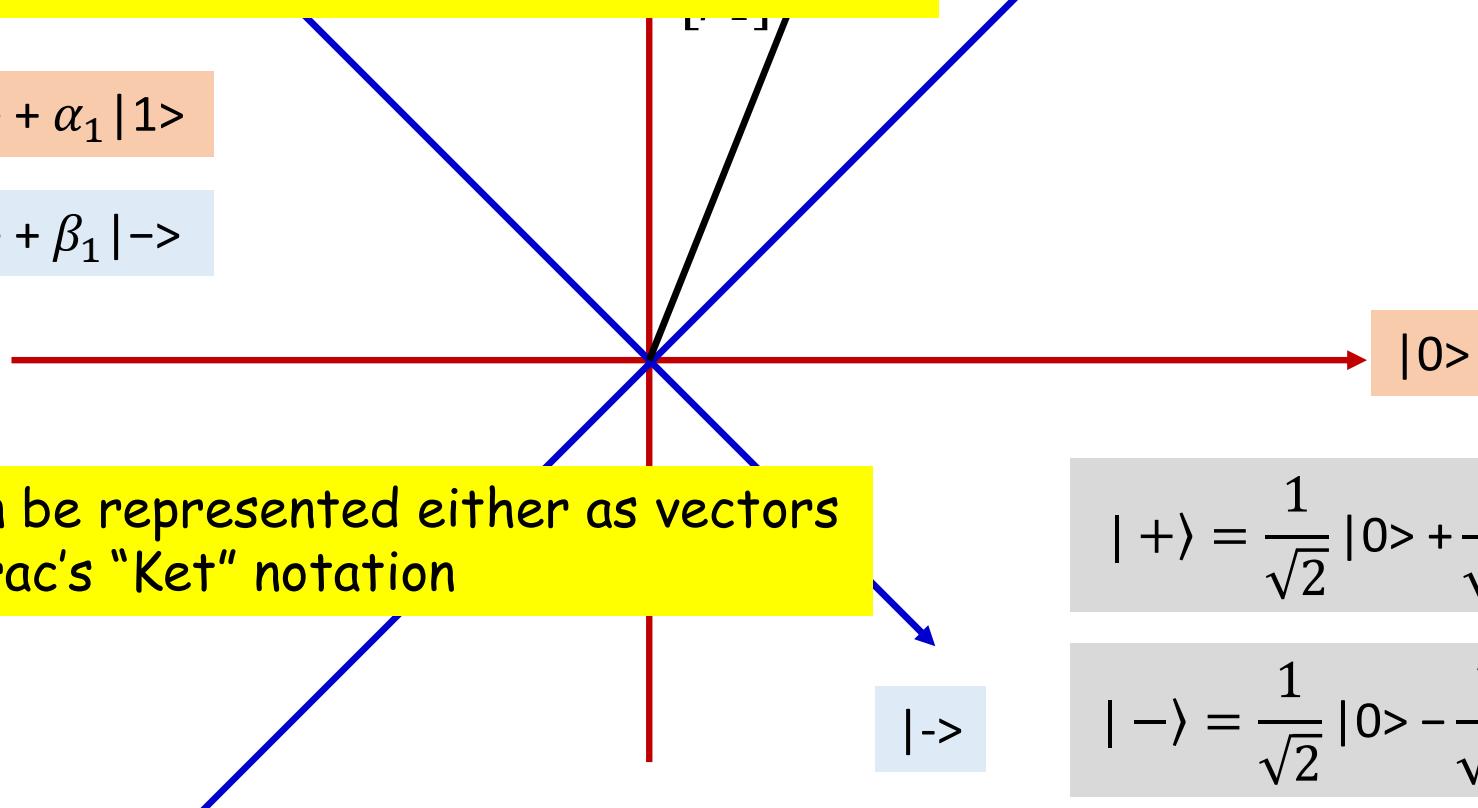
The space of phasors is a complex Hilbert space
A qubit is a vector on a unit sphere in this space

It can be expressed as the superposition of any set of orthogonal bases

Superposition == linear combination

$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$

$$|\psi\rangle = \beta_0 |+\rangle + \beta_1 |-\rangle$$



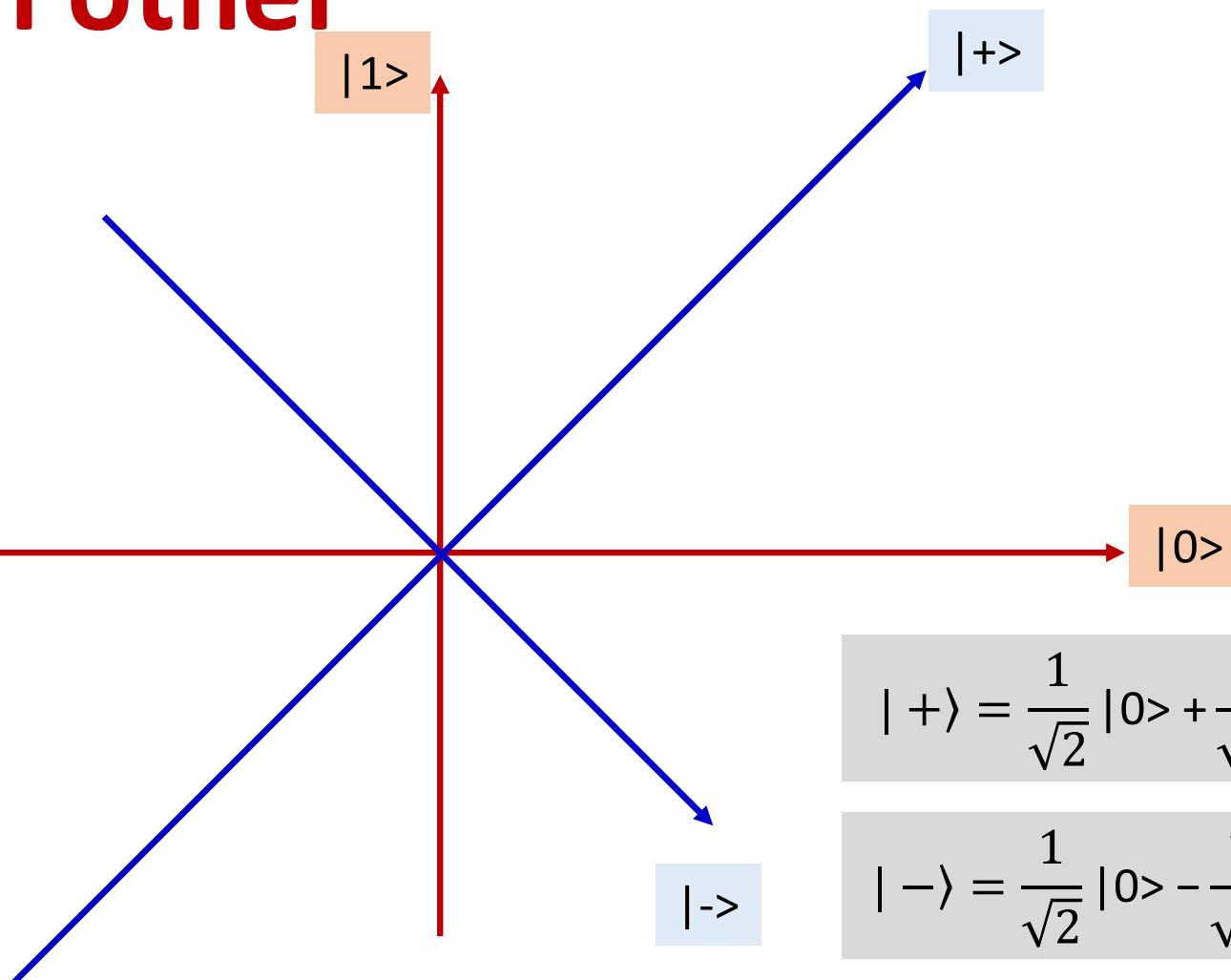
$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$

- The representation depends on the bases
 - Think orientation of your polarized glasses..

Bases can be expressed in terms of each other

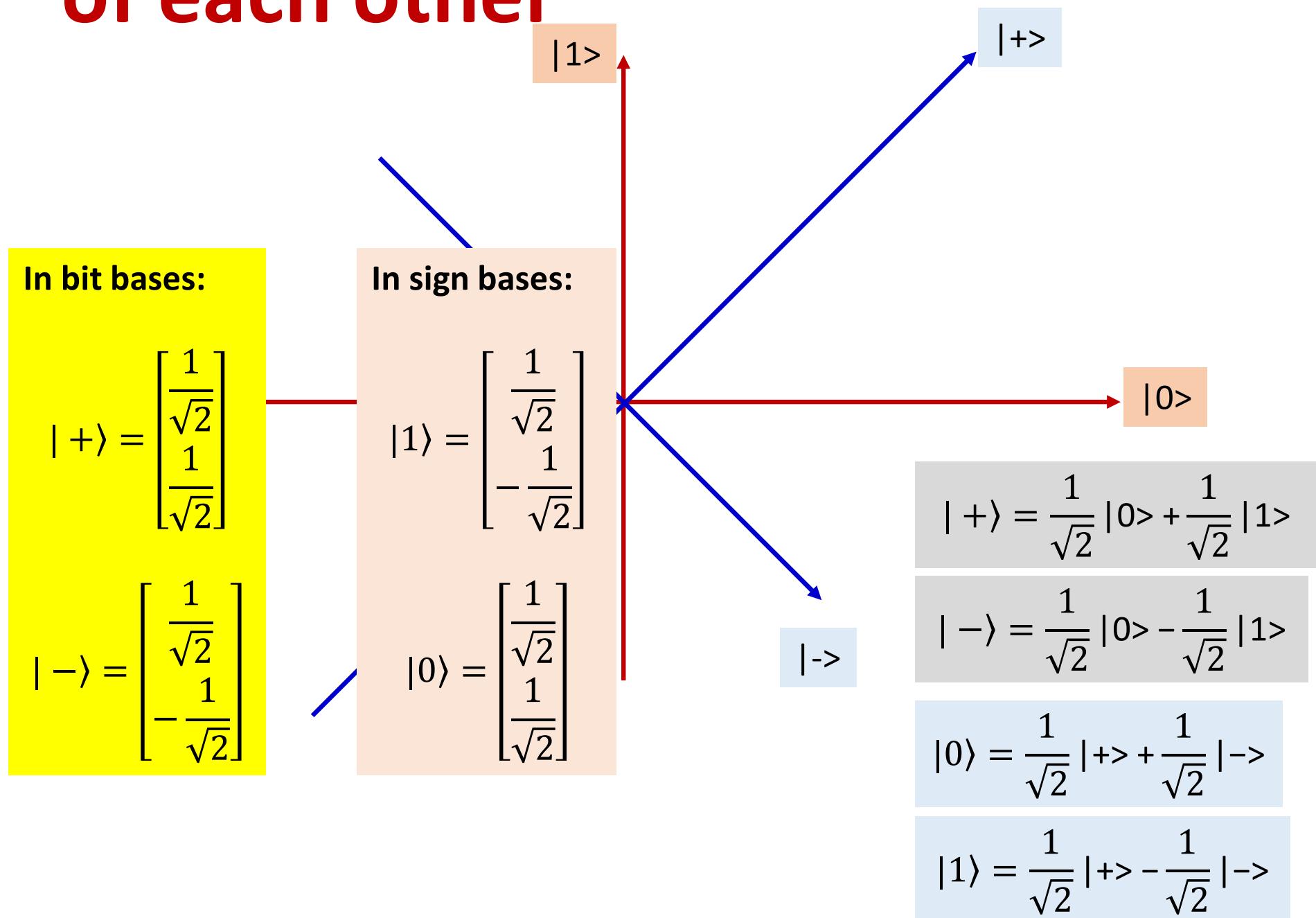
In bit bases:

$$|+\rangle = \begin{bmatrix} 1 \\ \frac{1}{\sqrt{2}} \\ 1 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$|-\rangle = \begin{bmatrix} 1 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$


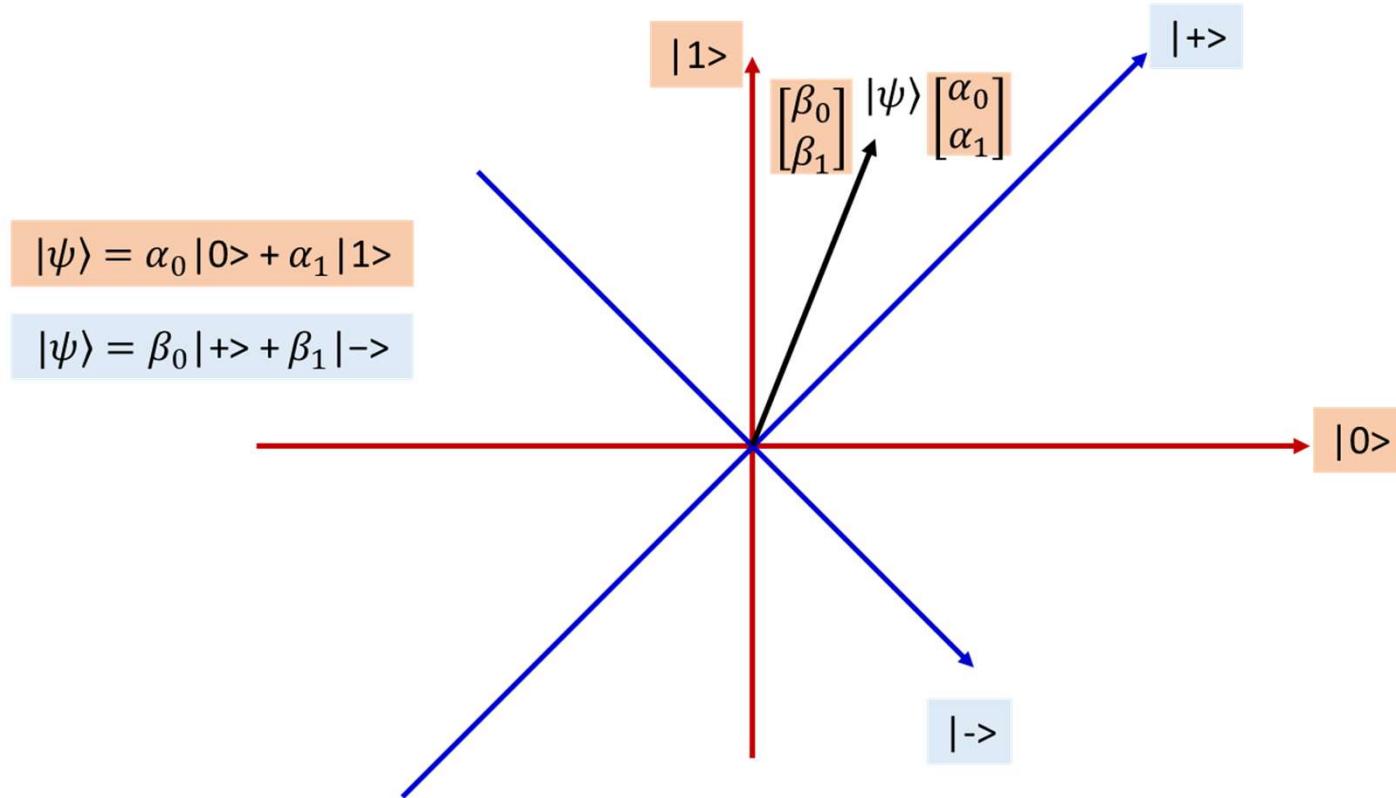
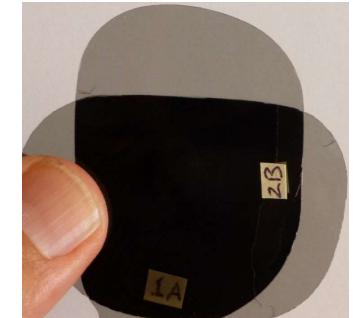
$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$

Bases can be expressed in terms of each other

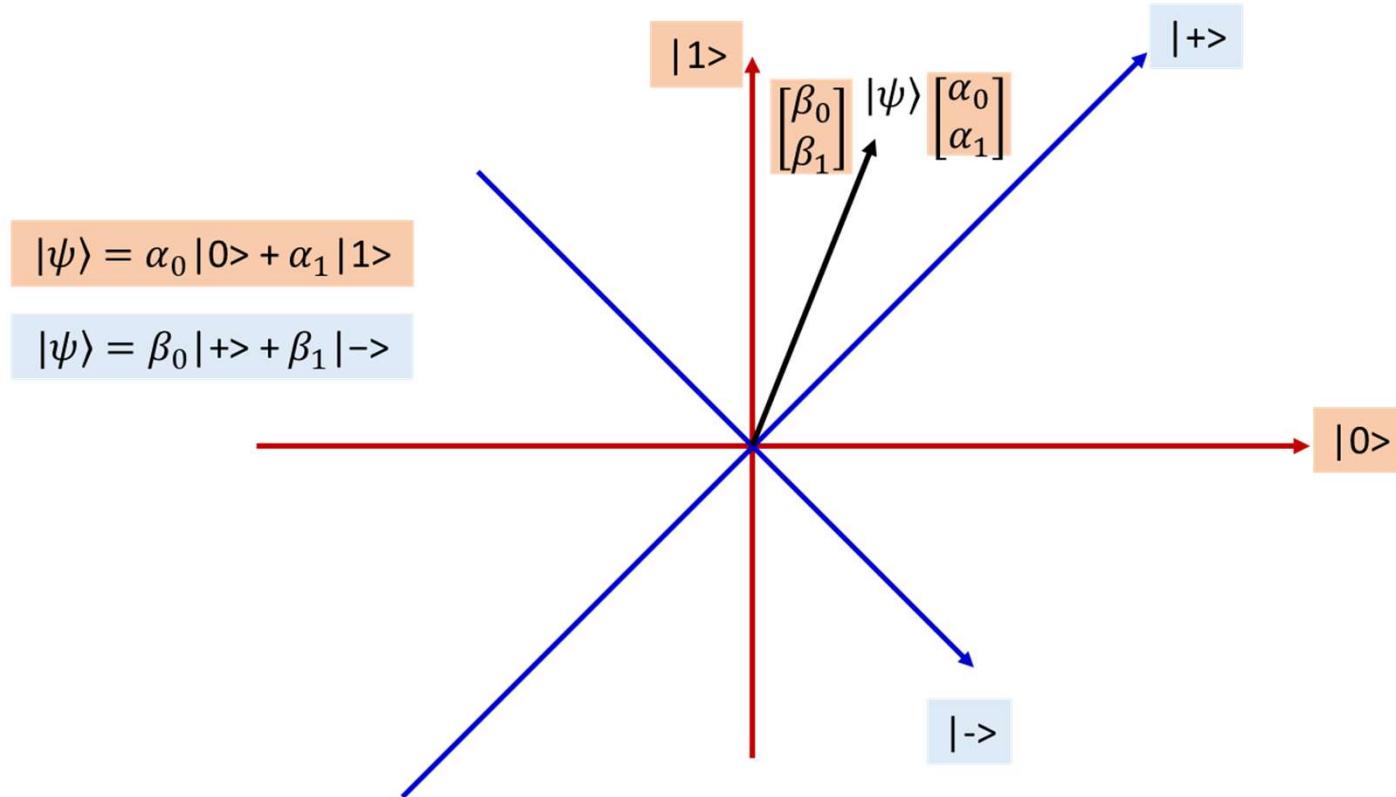
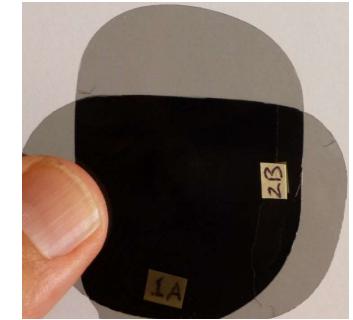


You can *measure* using either bases!!



- What are $P(|0\rangle)$ and $P(|1\rangle)$?
- What are $P(|+\rangle)$ and $P(|-\rangle)$?

You can *measure* using either bases!!



- What are $P(|0\rangle)$ and $P(|1\rangle)$?
- What are $P(|+\rangle)$ and $P(|-\rangle)$ using α_0 and α_1 ?

So what is measurement

- Measurement *projects* the phasor on the basis with a probability that is the square of the length of the projection
 - Using bit basis representation, but measuring on sign basis:

$$P(|+\rangle) = \left\| \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\|^2$$

$$P(|-\rangle) = \left\| \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \right\|^2$$

So what is measurement

- Measurement *projects* the phasor on the basis with a probability that is the square of the length of the projection
 - Using bit basis representation, but measuring on sign basis:

$$P(|+\rangle) = \left\| \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\|^2$$

What will be
 $P(|+\rangle)$ and $P(|-\rangle)$ using
the sign bases for
representation?

$$P(|-\rangle) = \left\| \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \right\|^2$$

What will be
 $P(|0\rangle)$ and $P(|1\rangle)$ using
the sign bases for
representation?

So what is measurement

- Measurement *projects* the phasor on the basis with a probability that is the square of the length of the projection
 - Using bit basis representation, but measuring on sign basis:

$P(\text{basis})$ is simply the square of the cosine of the angle between the phasor and the basis

$$P(|+\rangle) = \left| \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right|^2$$

What will be $P(|+\rangle)$ and $P(|-\rangle)$ using the sign bases for representation?

$$P(|-\rangle) = \left| \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}^H \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \right|^2$$

What will be $P(|0\rangle)$ and $P(|1\rangle)$ using the sign bases for representation?

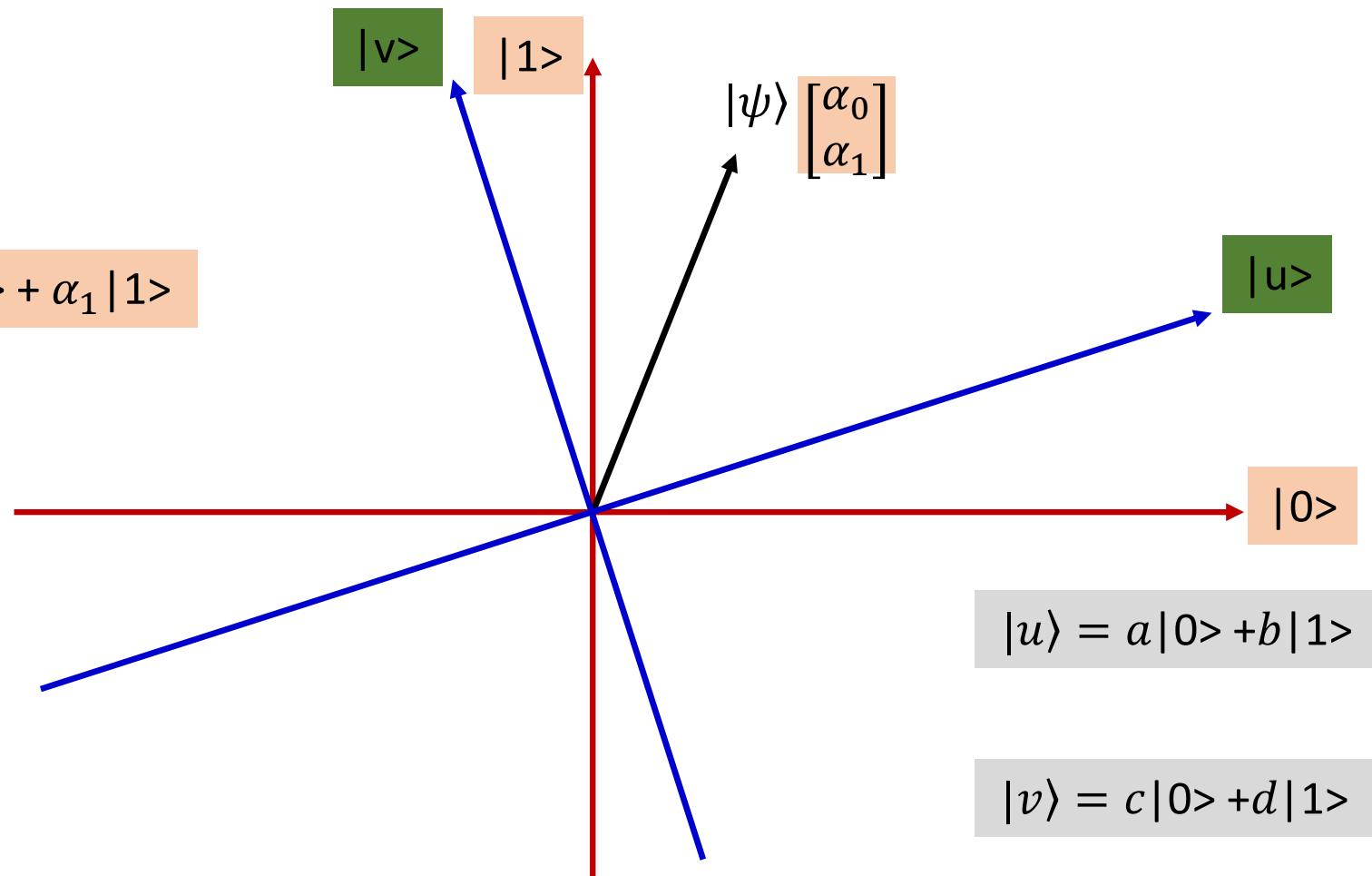
Some basic math

- The projection of a complex vector a on a complex vector b is given by

$$a^H b = \sum_i a_i^* b$$

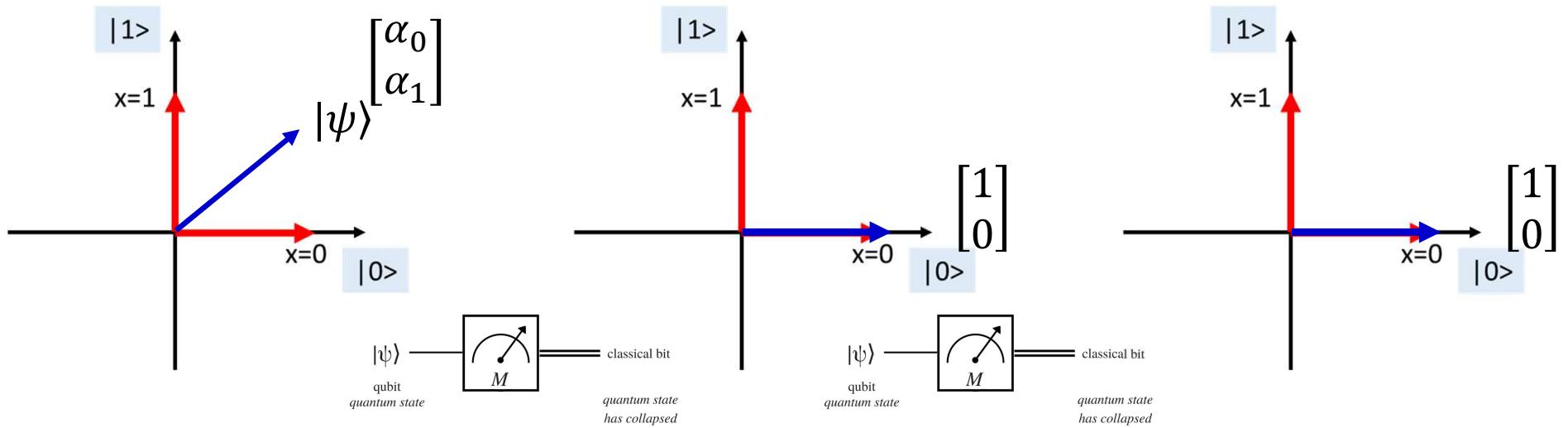
- For unit vectors it is the cosine of the angle between them
- For any basis, the probability of measuring that basis is the square of the cosine between the phasor and the basis

A different basis...



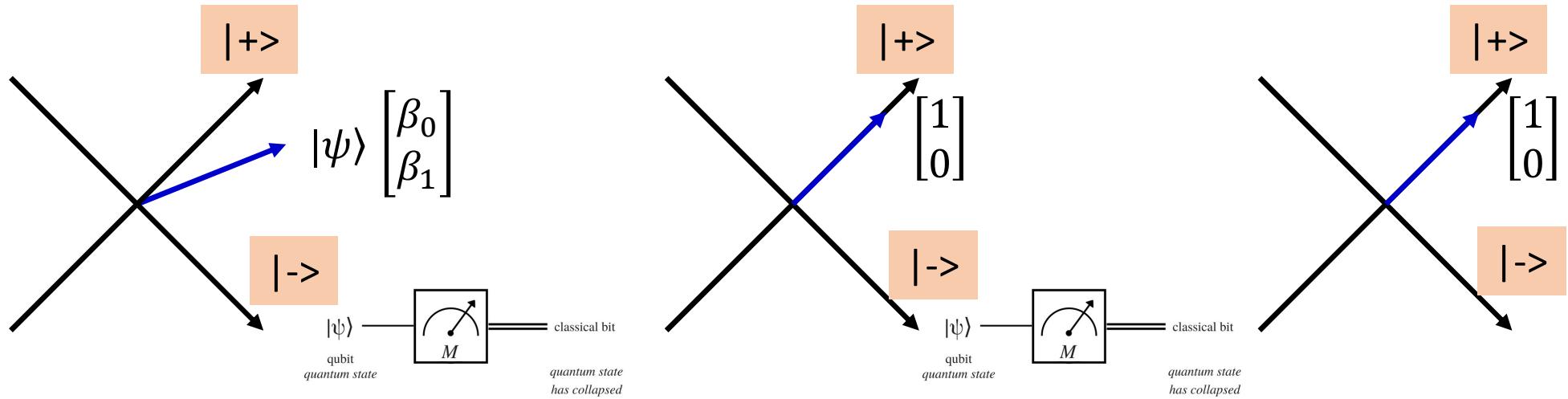
- What would $P(|u\rangle)$ and $P(|v\rangle)$ be?

Measurement *simplifies* life



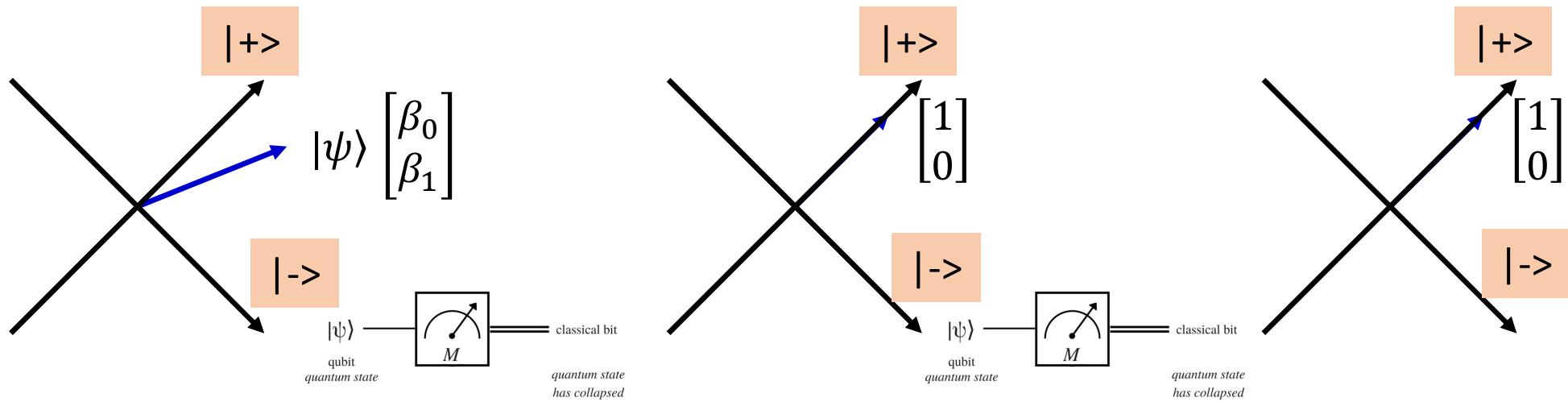
- By fixing the value

Measurement *simplifies* life



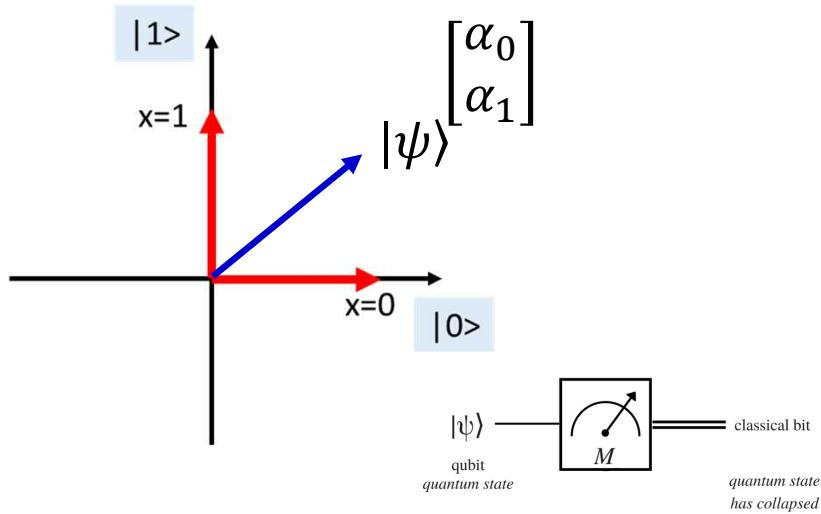
- By fixing the value

Measurement *simplifies* life

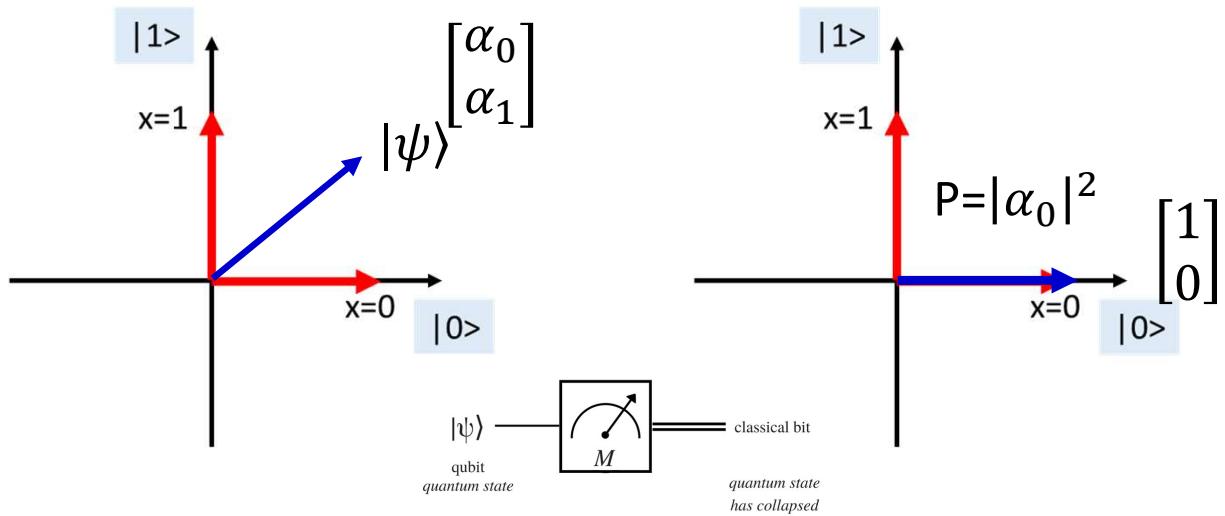


- By fixing the value
- Or does it?

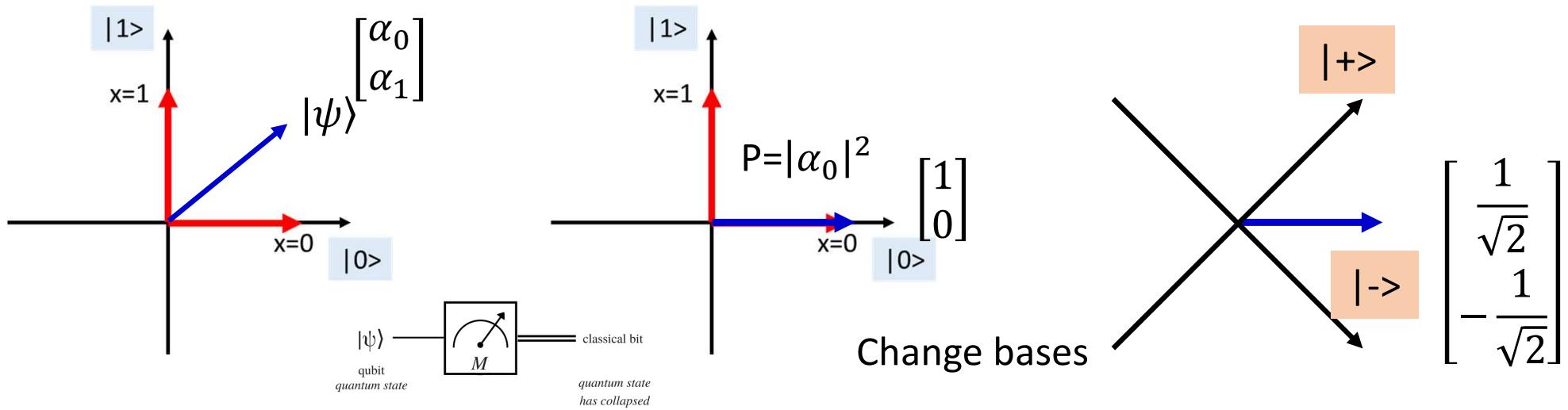
Measurement *simplifies* life



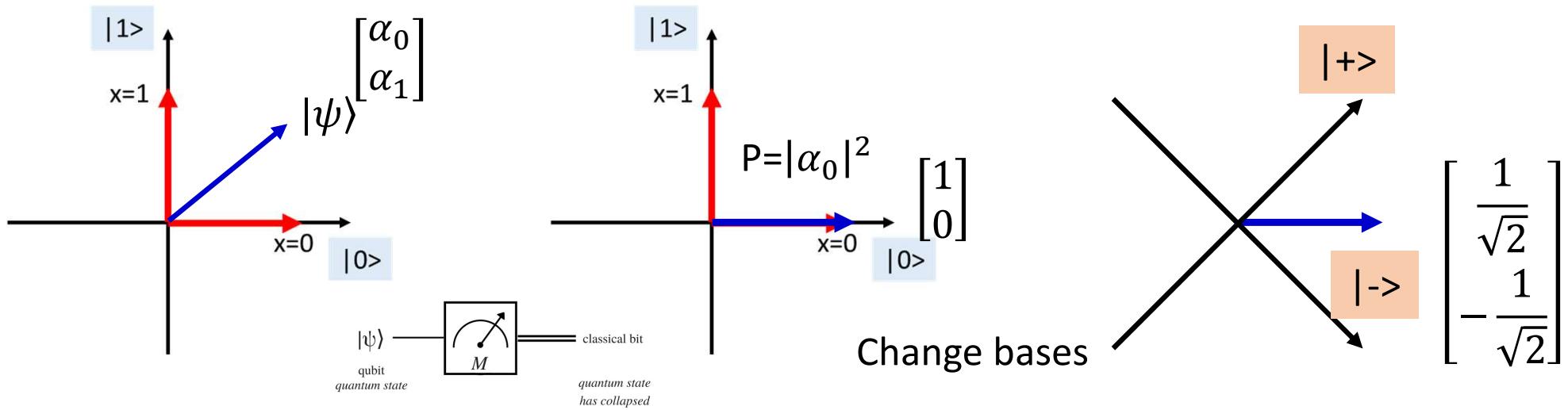
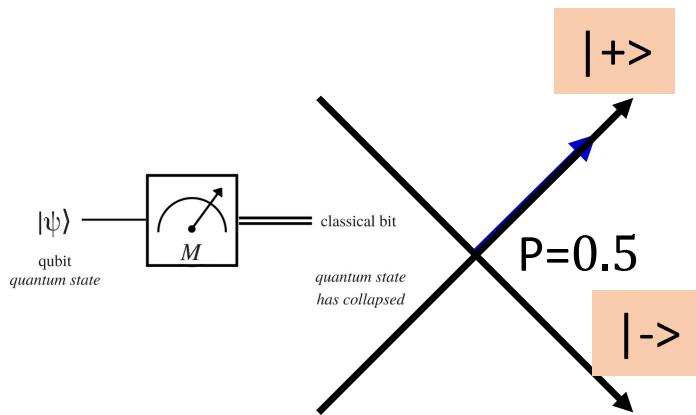
Measurement *simplifies* life



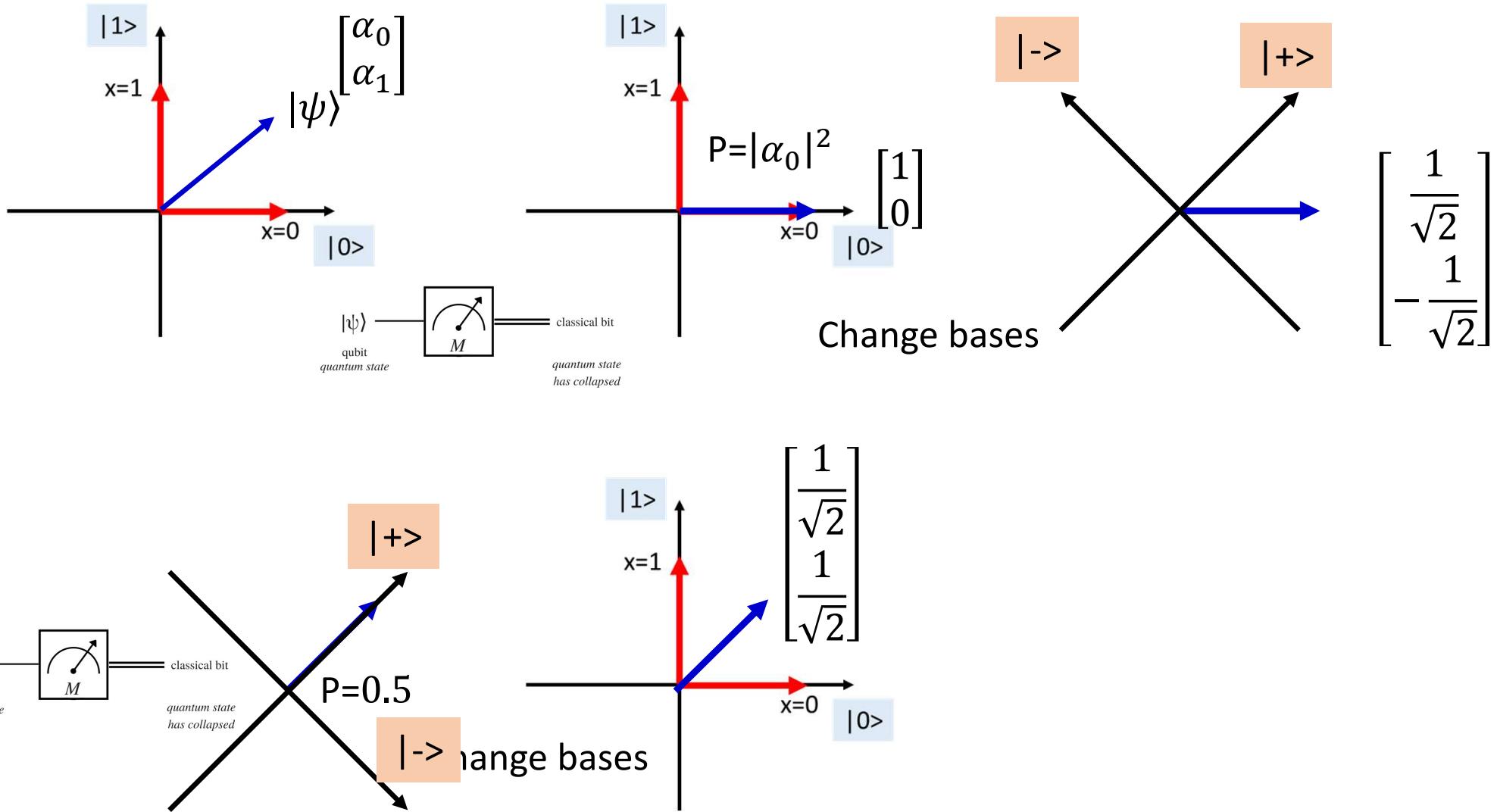
Measurement *simplifies* life



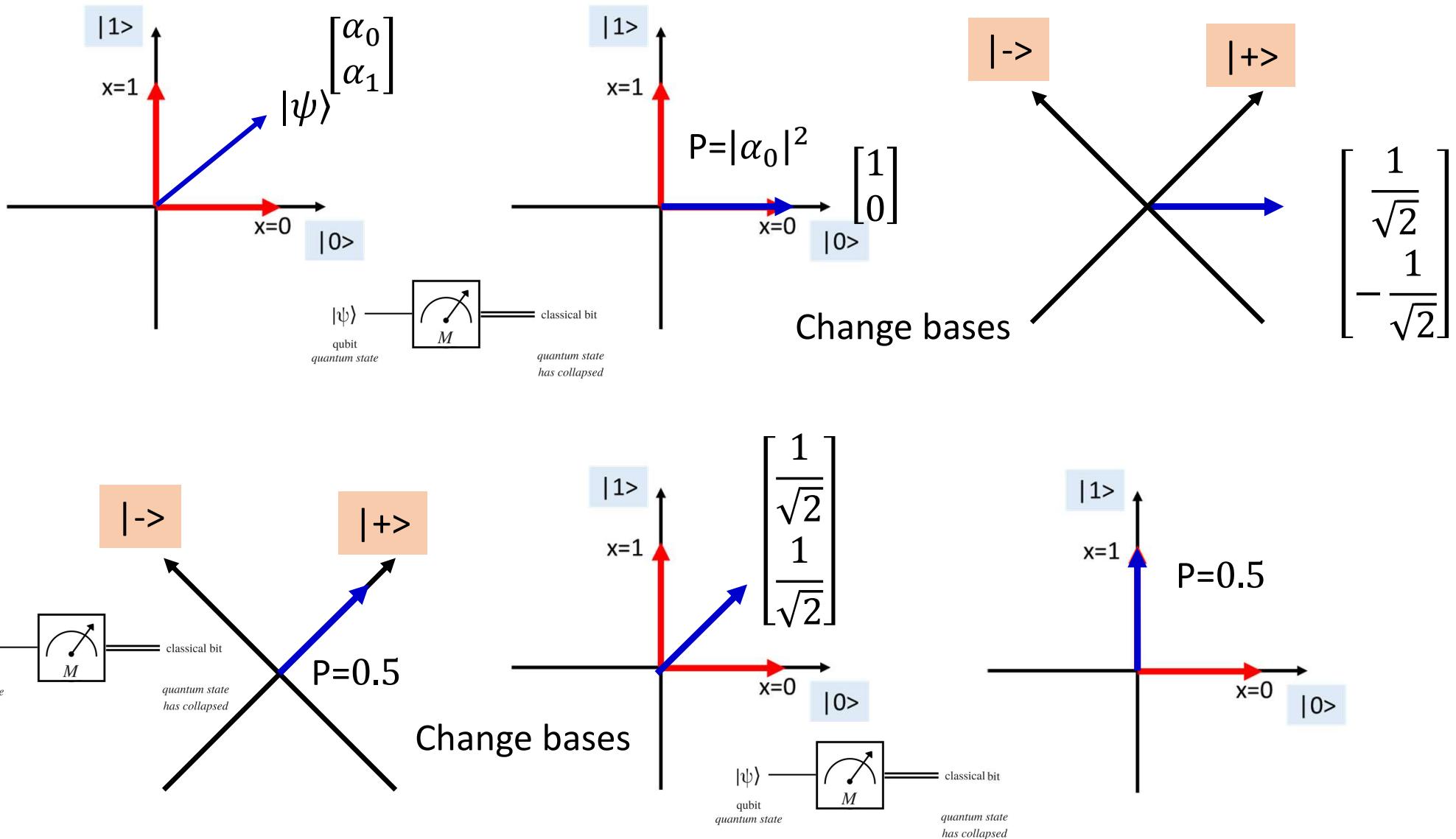
Measurement *simplifies* life



Measurement *simplifies* life



Measurement *simplifies* life



The world isn't what you think it is!!!

- Repeated measurements with different bases can completely alter reality!!!