Quantum...

computing

A standard model for Boolean
functions (aka algorithms)

bits

* A bunch of bits go in, and a bunch of bits come out

A simpler model for computation

2 % =
O wn
* A bunch of bits go in, and one bit . b‘
comes out A e
'
* Examples to the right S

A simpler model for computation

 The model to the left is in fact a generalization of the
model to the right

o How?

The actual model of
computation

X1
X3
W
) X3 > y 9-.
== . (s
— . (7
XN-1
XN

It is a function of N bits

o Aninput goes in, a unigue value comes out

The inputs lie in an N-dimensional space
o Each input dimension can take only two values [0,1].

o Other values are not defined

The entire set of all possible inputs lies on the corners of an N-dimensional hypercube

o The interior of the cube is infeasible

0.0, 13

0.0.0)

The function is defined on the corners of this hypercube

(0, 1, 1)

=l
\

(il 1:1)

(1o 11 -
(/ - 0. 1.0)
\‘-\'_
T~ 11
. {1, 1,0
(1,00

The input space representation

X1

(0,1,1)

(0,0,0)

(1,1,0)

* For a function over N bits, the function is defined over an N-dimensional
input space
o Each input bit represents an orthogonal direction in the space!

* Each feasible input combination is an N-dimensional vector in this space

o The feasible set of inputs is a countable, finite set of 2N points.

* In order to fully represent an input, N values must be provided

o One number for each input coordinate

The function

X1

\
bits
SHqQ

(0,0,0)

(1,1,0)

* The algorithm is simply a function that operates on this input
space

o It transforms each input vector to a Boolean value

* Note again that each input vector represents a single
possible combination of bits

o When operated on a vector, the function computes the output for
that combination of input bits

The unknown function
problem ‘*

':nn-ﬂh J.J 4 R“'\-.__M “'- J..];
-\.‘_H--. .‘_-- L
X, e
X o
wn (1,0, 1} E
'.i: % Y g (,//
0 wn - (0 1.0)
xN- / '*-___H
S
Xy ©.0.0) < .
e, T (1, 1, 0)
{1,0,0

* You are given an uncharacterized function
o N inputs
o You know the formulae in it, but don’t know what outputs it will produce for
any input

* You must characterize the function fully

* How many measurements must you make?

o “Measurement” : provide an input and note the output

“Discovering” a 2-bit function

X1 (0,1,1)
(0,0,1) (1,1,1)
(1,0,1 X3
| L — —»
/ﬁ) fx)
0,0,0
(1'0'0)<

Determine this function fully!

* Find out how it responds to any input

“Discovering” a 2-bit function

———
- -~

A PR RREY A
% (0,,1) A (0,,1)
(0,0,1) > (1,1,1) \ (0,0,1) (1,1,1)
N <
(1;011 X3 S /, (11011 X3
— / _—”,/ | /V
// 0,1,0) f(X) L — 0,1,0)
(0,0,0) (0,0,0)
\ (1,1,0) (1,1,0)
(1,0,0) (1,0,0)
< <

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

] ()

_<(0,1,0)

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

f(x) u@
(0,0,0) <

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

)

(0,0,0) " i
(1,1,0)
(1,0,0)
X;

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

o))

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

—-o> f(x) — -

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

----- - fx)

(1,1,0)

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

f(x) —> .

Determine this function fully!

* Pass each possible input vector through the
function and compute its response

“Discovering” a 2-bit function

2 g D ‘DJ ”
e
A ?ﬂ A
A o
-) ,1,1)
(1,1,1) 4 £ (0,0,1)
] 4
X3 =
/ —P
o fx)
(0,0,0
(1,1,0)

* Pass each possible input vector through the

function and compute its response
* And now its known

(1,1,0)

The N-bit unknown function
problem

bits

(0,0,0)

ST

(1,1,0)

e Recall: For a function over N bits, the function is defined over an

N-dimensional input space

* The feasible set of inputs is a countable, finite set of 2N vectors.

* The function must be individually evaluated at each of these 2N

vectors to define it fully

o Requiring 2N evaluations
o This cannot be reduced

Why this limitation?

X4
% (0,0,1) & (1,1,1)
3
._'2 X3 v g >
0 w
XN-
ke (0,0,0)
(1,1,0)

* Avector in the space represents only a single combination of bits

* The function operates on individual vectors. So, each operation produces the
output for a single combination of bits

* To determine the function fully, the function must be evaluated on every
feasible vector in the input space

o All 2N feasible input vectors

Why this limitation?

X
1 (0,1,1)
. (0,0,1) £ (1,1,1)
3

._"-’:’ X3 v g >
o] w

XN-

* (0,0,0) 110)

* Avector in the space represents only a single combination of bits

* The function operates on individual vectors. So, each operation produces the
output for a single combination of bits

* To determine the function fully, the function must be evaluated on every
feasible vector in the input space

o All 2N feasible input vectors

* Can we change the mathematical paradigm itself to change this scenario?
o Change the representation paradigm itself to make things more efficient, somehow

o E.g have a single function computation compute the outputs for multiple combinations
of input bits?

A different approach

 Modify the representation

* Instead of each bit representing a (orthogonal) coordinate
direction we will make each combination of bits represent a
orthogonal coordinate direction!

* Even 1 bitis now in a 2-D input space |1>
x=1
1-bit
x— flx} ——y

x=0

Note that this a fundamentally different representation
from standard representations!

A different approach

 1bit: Old representation

Qe
e

e 2 bits: Old representation

X5

1 bit: New representation
1> 4

x=1 A

| 0>

2 bits: New representation

Can't really visualize

(why)?

A different approach

 1bit: Old representation 1 bit: New representation
11>
x=1 A
. ;_ X
0
x=0 10>
e 2 bits: Old representation 2 bits: New representation
| 10>
2 2 N
|01>
e L]
|11>
\ »
> 100>
. > X, : .
Lame attempt at visualizing 4D

A different approach

e 3 bits: Old representation 3 bits: New representation

|~ Can't really visualize

(why)?

(1,1,0)

The modified representation

* A vector in this representation is a linear,
unambiguous combination of all input bit patterns

* Unambiguous because we set each bit pattern to
be an orthogonal direction to every other pattern

| 1>

x=1

1-bit

al0>+bl|1>

x=0

| 0>

al|00>+b|01>+c|10>+d]|11>

| 10>
A
|01>
|11>
R > 100>
2-bits

Lame attempt at visualizing 4D

Working with the modified

representation
| 1>
x=1 al0>+b|1> 11> f(a]0>+ b|1>)
1-bit =1

.............. »X— X)) ——y

1-bit
1-bit

 When the function operates on a vector, it operates
on a linear combination of all possible input values
o How does this help?
o Not directly, we need to make some assumptions

Adjustment 1: Linear functions

X) f(x) —y

* Afunction f(x) is linear if

flax +by) = af(x) + bf(y)

for any two scalars a and b

* We assume our function f(x) to be linear

o As it happens, Boolean functions can always be cast as linear
operators

For linear f(x)

| 1>

| 1>
x=1 o al0>+b[1> af (10)) + bf(I1))
1-bit X=1
-------------- > x— flx) —m—y

x=0
1-bit

1-bit

* For linear f(x), the output is a linear combination of the outputs for the
individual bit patterns!

* By simply measuring the output at a single input vector, we obtain the
combined outputs for all input bit patterns!

o One evaluation!! (As opposed to 2N)

e But are we done yet?

For linear f(x)

| 1>

x=1 o 2al0>+b|1> af (10)) + bf(11))

-------------- > X fX) Py

x=0
1-bit 0>

1-bit

* The combined output for the individual bit patterns doesn’t tell us what
the output is for any single bit pattern

o lLe youcan’tdivine f(]0)) and f(|1)) from af (|0)) + bf(|1))

* We need the output to maintain the distinction

o The function must separately compute the output for each input combination
and keep the answers distinct

Adjustment 2: Vector functions

X > f(x) >Y

* The output too is a vector

f(al0) +b[1)) = af(10)[0) + bf (|1))1)

For linear f(x)

(a,b) = al0)+ b|1)
y=1

. i>[. j>

x=0

| 0> >
y:
1-bit 0>

1-bit

(af (101, bf (11)))
= af (10)]0) + bf (|1)|1)
* Instead of merely computing a value at the vector, the function

moves the vector to a new position, where the individual
components represent the responses to individual bit patterns

o Amazingly enough, every Boolean function can be recast in this manner

Adjustment 2: Vector functions

a0|0>+a1|1> X) f(x) >Y b0|0>+b1|1>

* f(.)is alinear transform

* More generally:

Aoo 0 boo o In other words f() is a
matrix operator.
fo A0o..1| _ |boo..1
' : Note that this is a linear
all...l —bll...l_ Oper‘aTion

For f(x) to retain information
> L I

(ay,az)

| 1>

x=1
y=1

y=0
1-bit |0>

1-bit

(b1, b2)

e The function is a linear transform that transforms an input vector to an
output vector
o In the process, it determines the output for every input bit pattern in one step!!
o A single computation uncovers the entire function!

o But there is one more requirement... (what)?

For f(x) to retain information

- = = b

e F must be full rank

o Otherwise, we cannot recover the contribution of all components of
the input vector

= |.e. we cannot resolve the contributions of all bit patterns to the result

In other words, F must be invertible!!

A final issue

S = = = =
|1> E |1> A |1> A > 4
x=1 A al0>+b|1> v=14 v=14 VAt A
/} = | —
X=O — — —
|0> 2 Jjo> =0 0> =005
1-bit 1-bit 1- 1-bit

* Repeated applications of linear transforms can
make a vector longer and longer and blow up...

A final issue

1> o

x=1 A

al0>+b|1>

1-bit

1-bit

I [
e .
y=14
—
’'4 =
e | 0>
1-bit

* Repeated applications of linear transforms can

e ...or shrink and vanish

make a vector longer and longer and blow up...

|1>
y=1 4
éﬁ—b
y=0 | 0>
1-bit

The solution

|1> E |1> A |1> A

X=O ! = =
|0> =0 0> =0 0>
1-bit 1-bit 1-bi 1-bit

* I must not change the length of the vector

e i.e. it must be a rotation transform!

11>

The new paradigm

* Modified representation: Every bit pattern
is an orthogonal direction of the input space

o A vector in this space is a linear combination
of all bit patterns

* The function being computed is
representable as an invertible linear
transform

o More specifically a rotation

* Evaluation of the function on a single
vector can compute the output for every
possible bit pattern, in an identifiable way

X ::> (%) >y

2-bits

Old vs. the new paradigm

| 10>
(0,0,1)
|01>
(0,0,0 | 00>
2-bits
* Each bit is a coordinate dimension * Each bit pattern is a coordinate

dimension

* Must explicitly evaluate function for
every input to fully determine it * Asingle evaluation fully determines
the function

* In reverse: Given only the output,

must evaluate every input to * Inreverse: Given an output,
determine which one generated it determining which input produced it
o 2Ncomputations is a single-step computation

o Because computation is reversible

Where is this useful

2-bits

Satisfiability problems
o Does any bit pattern produce the output 1

Search problems

o Is any bit pattern in my library exactly equal to 11001010
= Equivalent to SAT problems

Combinatorial optimization problems

Any problem that can be set as a SAT problem

What are the practical issues?

| 10>

|01>
|11>
| 00>

2-bits

* |s this practically realizable?

What are the practical issues?

| 10>

2-bits
* |s this practically realizable?

* A conventional (classical) computer requires a single N-bit register to represent
a value

o A function takes in a single N-bit value and produces a single bit

* The new representation requires 2N numbers to represent a single value!
o For even N=100 bits, this requires ~1000000000000000000000000000000 numbers
o A function take in 219 values and produces 2% values

= leit’s a 22%%-valued transform!
o Which is why it’s not a very useful way of thinking about things

* |s there a parsimonious way of representing a 21°° component vector without
taking up the entire universe?

What are the practical issues?

| 10>

Fact that may only interest me:
"Graham's number” is a number that's
so large there isn't enough space in the
universe to write it..

2-bits
Is this practically realizable?

A conventional (classical) computer requires a single N-bit register to represent
a value

o A function takes in a single N-bit value and produces a single bit

The new representation requires 2N numbers to represent a single value!
o For even N=100 bits, this requires ~1000000000000000000000000000000 numbers
o A function take in 219 values and produces 2% values

= leit’s a 22%%-valued transform!
o Which is why its not a very useful way of thinking about things

Is there a parsimonious way of representing a 2100 component vector without
taking up the entire universe?

Enter.. The cat!!

Schrodinger's cat walks into a bar.
And doesn't.

* Introducing Quantum, the cat

