
Quantum…
computing

A standard model for Boolean
functions (aka algorithms)

• A bunch of bits go in, and a bunch of bits come out

bi
ts

bits

x1
x2

x3

xN-1

xN

y1

y2

yN

A simpler model for computation

• A bunch of bits go in, and one bit
comes out.

• Examples to the right

bi
ts

bits

x1
x2

x3

xN-1

xN

y

A simpler model for computation

• The model to the left is in fact a generalization of the
model to the right
o How?

The actual model of
computation

• It is a function of N bits
o An input goes in, a unique value comes out

• The inputs lie in an N-dimensional space
o Each input dimension can take only two values [0,1].

o Other values are not defined

• The entire set of all possible inputs lies on the corners of an N-dimensional hypercube
o The interior of the cube is infeasible

• The function is defined on the corners of this hypercube

The input space representation

• For a function over N bits, the function is defined over an N-dimensional
input space

o Each input bit represents an orthogonal direction in the space!

• Each feasible input combination is an N-dimensional vector in this space
o The feasible set of inputs is a countable, finite set of 2N points.

• In order to fully represent an input, N values must be provided
o One number for each input coordinate

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

The function

• The algorithm is simply a function that operates on this input
space

o It transforms each input vector to a Boolean value

• Note again that each input vector represents a single
possible combination of bits

o When operated on a vector, the function computes the output for
that combination of input bits

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

The unknown function
problem

• You are given an uncharacterized function
o N inputs
o You know the formulae in it, but don’t know what outputs it will produce for

any input

• You must characterize the function fully

• How many measurements must you make?
o “Measurement” : provide an input and note the output

“Discovering” a 2-bit function

• Find out how it responds to any input

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

Determine this function fully!

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Determine this function fully!

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

“Discovering” a 2-bit function

• Pass each possible input vector through the
function and compute its response

• And now its known

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

The N-bit unknown function
problem

• Recall: For a function over N bits, the function is defined over an
N-dimensional input space

• The feasible set of inputs is a countable, finite set of 2N vectors.

• The function must be individually evaluated at each of these 2N

vectors to define it fully
o Requiring 2N evaluations
o This cannot be reduced

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Why this limitation?

• A vector in the space represents only a single combination of bits

• The function operates on individual vectors. So, each operation produces the
output for a single combination of bits

• To determine the function fully, the function must be evaluated on every
feasible vector in the input space

o All 2N feasible input vectors

• Can we change the mathematical paradigm itself to change this scenario?
o Change the representation paradigm itself to make things more efficient, somehow

o E.g have a single function computation compute the outputs for multiple combinations
of input bits?

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

Why this limitation?

• A vector in the space represents only a single combination of bits

• The function operates on individual vectors. So, each operation produces the
output for a single combination of bits

• To determine the function fully, the function must be evaluated on every
feasible vector in the input space

o All 2N feasible input vectors

• Can we change the mathematical paradigm itself to change this scenario?
o Change the representation paradigm itself to make things more efficient, somehow

o E.g have a single function computation compute the outputs for multiple combinations
of input bits?

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

f(x)

A different approach
• Modify the representation

• Instead of each bit representing a (orthogonal) coordinate
direction we will make each combination of bits represent a
orthogonal coordinate direction!

• Even 1 bit is now in a 2-D input space

f(x)x y

1-bit

|0>

|1>

x=0

x=1

Note that this a fundamentally different representation
from standard representations!

A different approach
• 1 bit: Old representation 1 bit: New representation

x
0 1

• 2 bits: Old representation 2 bits: New representation

x1

x2

Can’t really visualize

(why)?

A different approach
• 1 bit: Old representation 1 bit: New representation

x
0 1

• 2 bits: Old representation 2 bits: New representation

x1

x2

|00>

|01>

|10>

|11>

Lame attempt at visualizing 4D

A different approach
• 3 bits: Old representation 3 bits: New representation

Can’t really visualize

(why)?

x1

x2

x3

(0,0,0)

(0,0,1)

(1,0,0)

(0,1,0)

(1,1,0)

(1,1,1)

(0,1,1)

(1,0,1)

The modified representation
• A vector in this representation is a linear,

unambiguous combination of all input bit patterns

• Unambiguous because we set each bit pattern to
be an orthogonal direction to every other pattern

|00>

|01>

|10>

|11>

a|00> + b|01> + c|10> + d|11>

|0>

|1>

x=0

x=1 a|0> + b|1>

1-bit 2-bits

Lame attempt at visualizing 4D

Working with the modified
representation

• When the function operates on a vector, it operates
on a linear combination of all possible input values
o How does this help?
o Not directly, we need to make some assumptions

|0>

|1>

x=0

x=1

f(a|0> + b|1>)

1-bit

Adjustment 1: Linear functions

• A function is linear if

for any two scalars and

• We assume our function to be linear
o As it happens, Boolean functions can always be cast as linear

operators

f(x)X y

For linear f(x)

• For linear f(x), the output is a linear combination of the outputs for the
individual bit patterns!

• By simply measuring the output at a single input vector, we obtain the
combined outputs for all input bit patterns!

o One evaluation!! (As opposed to 2N)

• But are we done yet?

|0>

|1>

x=0

x=1

1-bit

For linear f(x)

• The combined output for the individual bit patterns doesn’t tell us what
the output is for any single bit pattern

o I.e you can’t divine and from

• We need the output to maintain the distinction
o The function must separately compute the output for each input combination

and keep the answers distinct

|0>

|1>

x=0

x=1

1-bit

Adjustment 2: Vector functions

• The output too is a vector

• In other words f() is a linear transform

f(x)X Y

For linear f(x)

• Instead of merely computing a value at the vector, the function
moves the vector to a new position, where the individual
components represent the responses to individual bit patterns

o Amazingly enough, every Boolean function can be recast in this manner

|0>

|1>

y=0

y=1

1-bit

Adjustment 2: Vector functions

• is a linear transform

• More generally:

f(x)X Y଴ ଵ ଴ ଵ

In other words is a
matrix operator.

Note that this is a linear
operation

For f(x) to retain information

• The function is a linear transform that transforms an input vector to an
output vector

o In the process, it determines the output for every input bit pattern in one step!!
o A single computation uncovers the entire function!
o But there is one more requirement… (what)?

|0>

|1>

y=0

y=1

ଵ ଶ

1-bit

ଵ ଶ

For f(x) to retain information

• must be full rank
o Otherwise, we cannot recover the contribution of all components of

the input vector
 I.e. we cannot resolve the contributions of all bit patterns to the result

• In other words, must be invertible!!

|0>

|1>

y=0

y=1

|0>

|1>

x=0

x=1

A final issue

• Repeated applications of linear transforms can
make a vector longer and longer and blow up…

A final issue

• Repeated applications of linear transforms can
make a vector longer and longer and blow up…

• … or shrink and vanish

The solution

• must not change the length of the vector

• i.e. it must be a rotation transform!

The new paradigm
• Modified representation: Every bit pattern

is an orthogonal direction of the input space
o A vector in this space is a linear combination

of all bit patterns

• The function being computed is
representable as an invertible linear
transform

o More specifically a rotation

• Evaluation of the function on a single
vector can compute the output for every
possible bit pattern, in an identifiable way

|00>

|01>

|10>

|11>

2-bits

Old vs. the new paradigm

• Each bit is a coordinate dimension

• Must explicitly evaluate function for
every input to fully determine it

• In reverse: Given only the output,
must evaluate every input to
determine which one generated it

o 2Ncomputations

• Each bit pattern is a coordinate
dimension

• A single evaluation fully determines
the function

• In reverse: Given an output,
determining which input produced it
is a single-step computation

o Because computation is reversible

|00>

|01>

|10>

|11>

2-bits

Where is this useful

• Satisfiability problems
o Does any bit pattern produce the output 1

• Search problems
o Is any bit pattern in my library exactly equal to 11001010

 Equivalent to SAT problems

• Combinatorial optimization problems
• ….
• Any problem that can be set as a SAT problem

|00>

|01>

|10>

|11>

2-bits

What are the practical issues?

• Is this practically realizable?

|00>

|01>

|10>

|11>

2-bits

• Is this practically realizable?

• A conventional (classical) computer requires a single N-bit register to represent
a value

o A function takes in a single N-bit value and produces a single bit

• The new representation requires 2N numbers to represent a single value!
o For even N=100 bits, this requires ~1000000000000000000000000000000 numbers
o A function take in 2100 values and produces 2100 values

 I.e it’s a 2200-valued transform!

o Which is why it’s not a very useful way of thinking about things

• Is there a parsimonious way of representing a 2100 component vector without
taking up the entire universe?

What are the practical issues?

|00>

|01>

|10>

|11>

2-bits

What are the practical issues?

• Is this practically realizable?

• A conventional (classical) computer requires a single N-bit register to represent
a value

o A function takes in a single N-bit value and produces a single bit

• The new representation requires 2N numbers to represent a single value!
o For even N=100 bits, this requires ~1000000000000000000000000000000 numbers
o A function take in 2100 values and produces 2100 values

 I.e it’s a 2200-valued transform!

o Which is why its not a very useful way of thinking about things

• Is there a parsimonious way of representing a 2100 component vector without
taking up the entire universe?

|00>

|01>

|10>

|11>

2-bits

Fact that may only interest me:
“Graham’s number” is a number that’s
so large there isn’t enough space in the
universe to write it..

Enter.. The cat!!

• Introducing Quantum, the cat

