Quantum...

computing




A standard model for Boolean
functions (aka algorithms)

bits

* A bunch of bits go in, and a bunch of bits come out



A simpler model for computation
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A simpler model for computation

 The model to the left is in fact a generalization of the
model to the right

o How?



The actual model of
computation
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It is a function of N bits

o Aninput goes in, a unigue value comes out

The inputs lie in an N-dimensional space
o Each input dimension can take only two values [0,1].

o Other values are not defined

The entire set of all possible inputs lies on the corners of an N-dimensional hypercube

o The interior of the cube is infeasible
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The function is defined on the corners of this hypercube
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The input space representation
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* For a function over N bits, the function is defined over an N-dimensional
input space
o Each input bit represents an orthogonal direction in the space!

* Each feasible input combination is an N-dimensional vector in this space

o The feasible set of inputs is a countable, finite set of 2N points.

* In order to fully represent an input, N values must be provided

o One number for each input coordinate



The function
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* The algorithm is simply a function that operates on this input
space

o It transforms each input vector to a Boolean value

* Note again that each input vector represents a single
possible combination of bits

o When operated on a vector, the function computes the output for
that combination of input bits



The unknown function
problem ‘*
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* You are given an uncharacterized function
o N inputs
o You know the formulae in it, but don’t know what outputs it will produce for
any input

* You must characterize the function fully

* How many measurements must you make?

o “Measurement” : provide an input and note the output



“Discovering” a 2-bit function
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Determine this function fully!

* Find out how it responds to any input



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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Determine this function fully!

* Pass each possible input vector through the
function and compute its response



“Discovering” a 2-bit function
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* Pass each possible input vector through the

function and compute its response
* And now its known

(1,1,0)



The N-bit unknown function
problem
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e Recall: For a function over N bits, the function is defined over an

N-dimensional input space

* The feasible set of inputs is a countable, finite set of 2N vectors.

* The function must be individually evaluated at each of these 2N

vectors to define it fully

o Requiring 2N evaluations
o This cannot be reduced




Why this limitation?
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* Avector in the space represents only a single combination of bits

* The function operates on individual vectors. So, each operation produces the
output for a single combination of bits

* To determine the function fully, the function must be evaluated on every
feasible vector in the input space

o All 2N feasible input vectors



Why this limitation?
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* Avector in the space represents only a single combination of bits

* The function operates on individual vectors. So, each operation produces the
output for a single combination of bits

* To determine the function fully, the function must be evaluated on every
feasible vector in the input space

o All 2N feasible input vectors

* Can we change the mathematical paradigm itself to change this scenario?
o Change the representation paradigm itself to make things more efficient, somehow

o E.g have a single function computation compute the outputs for multiple combinations
of input bits?




A different approach

 Modify the representation

* Instead of each bit representing a (orthogonal) coordinate
direction we will make each combination of bits represent a
orthogonal coordinate direction!

* Even 1 bitis now in a 2-D input space |1>
x=1
1-bit
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x=0

Note that this a fundamentally different representation
from standard representations!



A different approach

 1bit: Old  representation
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Can't really visualize

(why)?



A different approach
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A different approach
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The modified representation

* A vector in this representation is a linear,
unambiguous combination of all input bit patterns

* Unambiguous because we set each bit pattern to
be an orthogonal direction to every other pattern
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Lame attempt at visualizing 4D



Working with the modified

representation
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 When the function operates on a vector, it operates
on a linear combination of all possible input values
o How does this help?
o Not directly, we need to make some assumptions



Adjustment 1: Linear functions
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* Afunction f(x) is linear if

flax +by) = af(x) + bf(y)

for any two scalars a and b

* We assume our function f(x) to be linear

o As it happens, Boolean functions can always be cast as linear
operators



For linear f(x)
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* For linear f(x), the output is a linear combination of the outputs for the
individual bit patterns!

* By simply measuring the output at a single input vector, we obtain the
combined outputs for all input bit patterns!

o One evaluation!! (As opposed to 2N)

e But are we done yet?



For linear f(x)
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* The combined output for the individual bit patterns doesn’t tell us what
the output is for any single bit pattern

o lLe youcan’tdivine f(]0)) and f(|1)) from af (|0)) + bf(|1))

* We need the output to maintain the distinction

o The function must separately compute the output for each input combination
and keep the answers distinct



Adjustment 2: Vector functions
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* The output too is a vector

f(al0) +b[1)) = af(10)[0) + bf (|1))1)



For linear f(x)
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(af (101, bf (11)))
= af (10)]0) + bf (|1)|1)
* Instead of merely computing a value at the vector, the function

moves the vector to a new position, where the individual
components represent the responses to individual bit patterns

o Amazingly enough, every Boolean function can be recast in this manner



Adjustment 2: Vector functions
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* f(.)is alinear transform

* More generally:

Aoo 0 boo o In other words f() is a
matrix operator.
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For f(x) to retain information
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e The function is a linear transform that transforms an input vector to an
output vector
o In the process, it determines the output for every input bit pattern in one step!!
o A single computation uncovers the entire function!

o But there is one more requirement... (what)?



For f(x) to retain information
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e F must be full rank

o Otherwise, we cannot recover the contribution of all components of
the input vector

= |.e. we cannot resolve the contributions of all bit patterns to the result

In other words, F must be invertible!!




A final issue
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* Repeated applications of linear transforms can
make a vector longer and longer and blow up...



A final issue
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* Repeated applications of linear transforms can

e ...or shrink and vanish

make a vector longer and longer and blow up...
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The solution
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* I must not change the length of the vector

e i.e. it must be a rotation transform!
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The new paradigm

* Modified representation: Every bit pattern
is an orthogonal direction of the input space

o A vector in this space is a linear combination
of all bit patterns

* The function being computed is
representable as an invertible linear
transform

o More specifically a rotation

* Evaluation of the function on a single
vector can compute the output for every
possible bit pattern, in an identifiable way
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Old vs. the new paradigm
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* Each bit is a coordinate dimension * Each bit pattern is a coordinate

dimension

* Must explicitly evaluate function for
every input to fully determine it * Asingle evaluation fully determines
the function

* In reverse: Given only the output,

must evaluate every input to * Inreverse: Given an output,
determine which one generated it determining which input produced it
o 2Ncomputations is a single-step computation

o Because computation is reversible



Where is this useful

2-bits

Satisfiability problems
o Does any bit pattern produce the output 1

Search problems

o Is any bit pattern in my library exactly equal to 11001010
= Equivalent to SAT problems

Combinatorial optimization problems

Any problem that can be set as a SAT problem



What are the practical issues?

| 10>

|01>
|11>
| 00>

2-bits

* |s this practically realizable?



What are the practical issues?
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2-bits
* |s this practically realizable?

* A conventional (classical) computer requires a single N-bit register to represent
a value

o A function takes in a single N-bit value and produces a single bit

* The new representation requires 2N numbers to represent a single value!
o For even N=100 bits, this requires ~1000000000000000000000000000000 numbers
o A function take in 219 values and produces 2% values

= leit’s a 22%%-valued transform!
o Which is why it’s not a very useful way of thinking about things

* |s there a parsimonious way of representing a 21°° component vector without
taking up the entire universe?



What are the practical issues?
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Fact that may only interest me:
"Graham's number” is a number that's
so large there isn't enough space in the
universe to write it..

2-bits
Is this practically realizable?

A conventional (classical) computer requires a single N-bit register to represent
a value

o A function takes in a single N-bit value and produces a single bit

The new representation requires 2N numbers to represent a single value!
o For even N=100 bits, this requires ~1000000000000000000000000000000 numbers
o A function take in 219 values and produces 2% values

= leit’s a 22%%-valued transform!
o Which is why its not a very useful way of thinking about things

Is there a parsimonious way of representing a 2100 component vector without
taking up the entire universe?



Enter.. The cat!!

Schrodinger's cat walks into a bar.
And doesn't.

* Introducing Quantum, the cat



