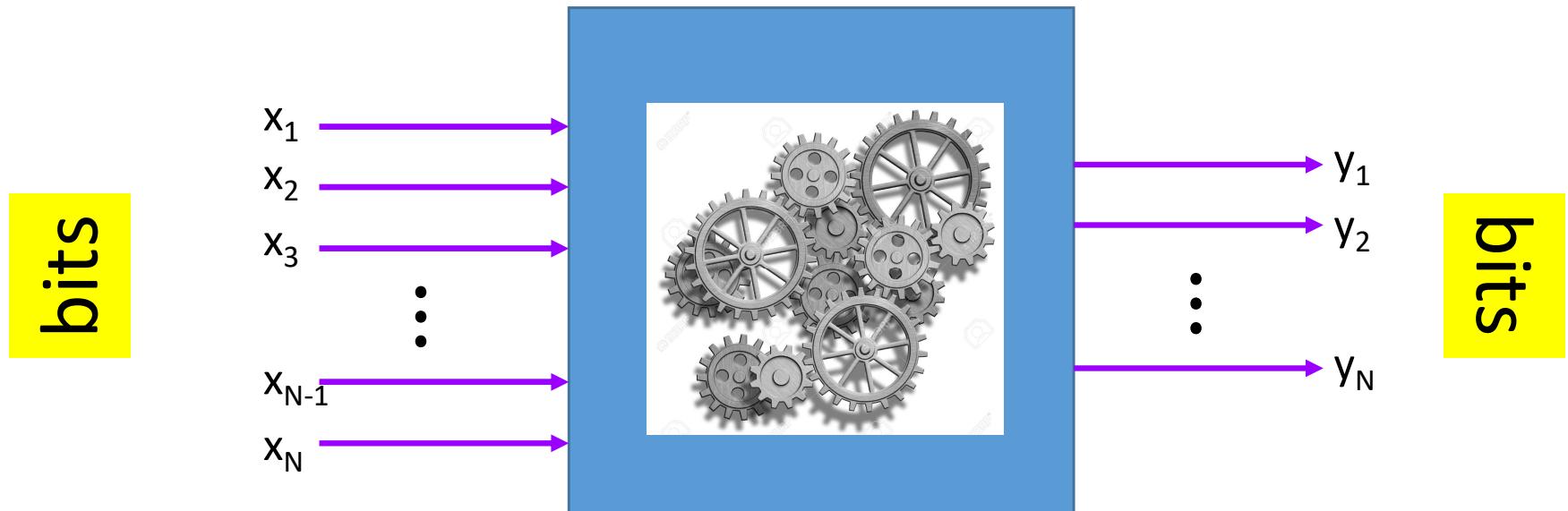


Quantum...

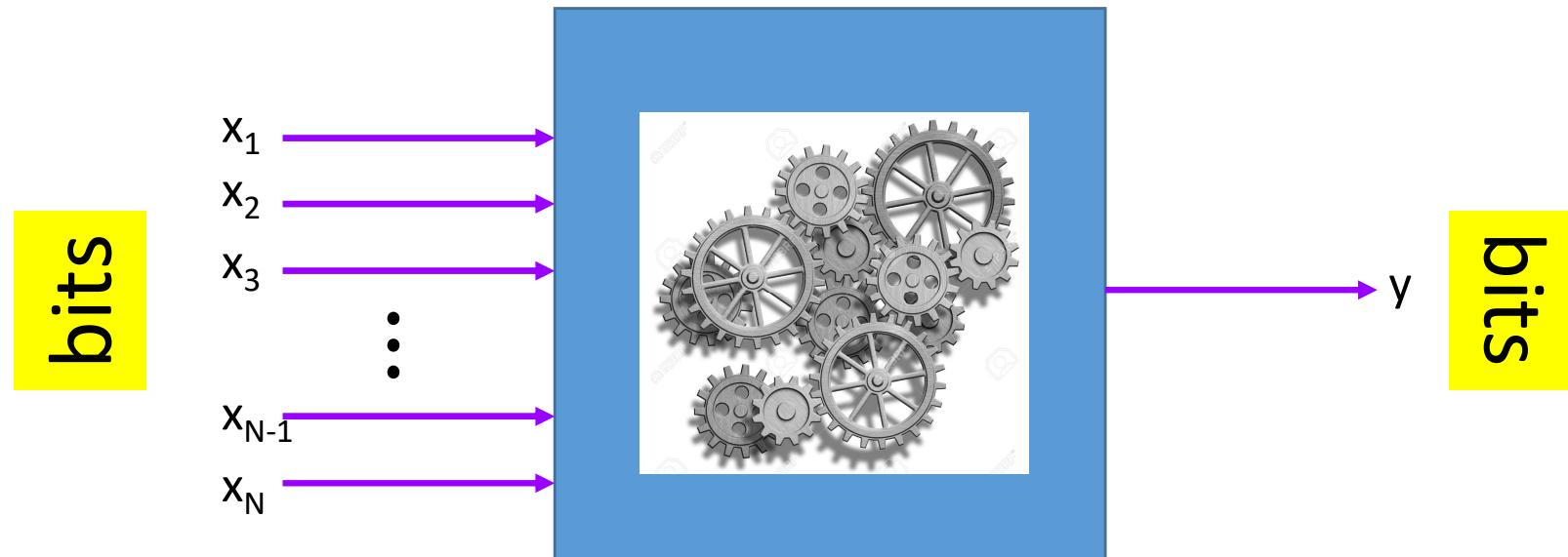
computing

A standard model for Boolean functions (aka algorithms)

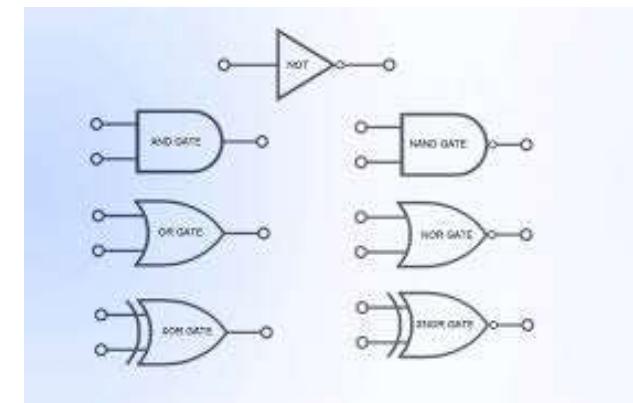


- A bunch of bits go in, and a bunch of bits come out

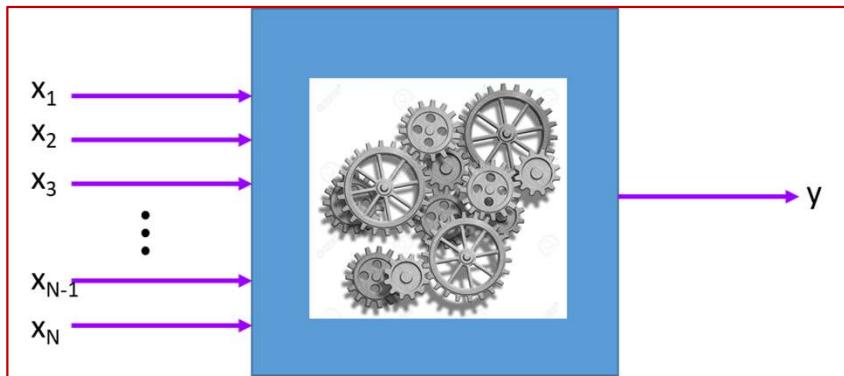
A simpler model for computation



- A bunch of bits go in, and one bit comes out.
- Examples to the right

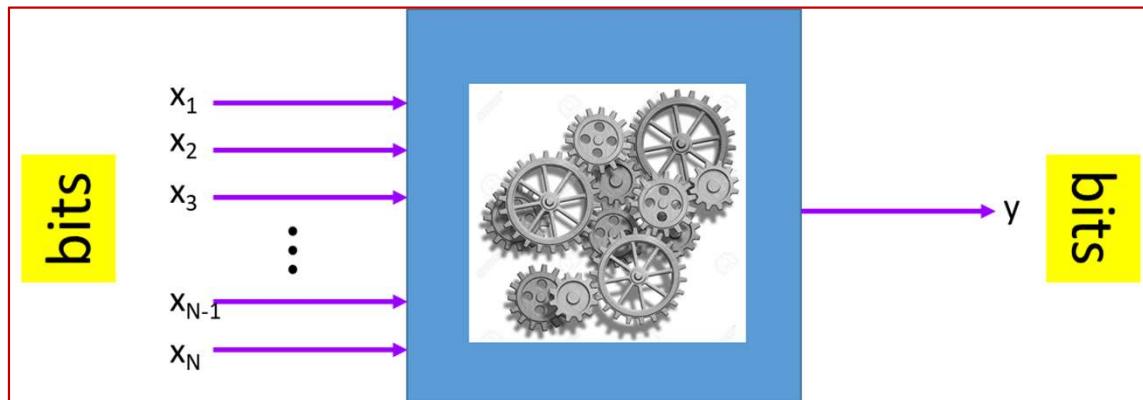


A simpler model for computation

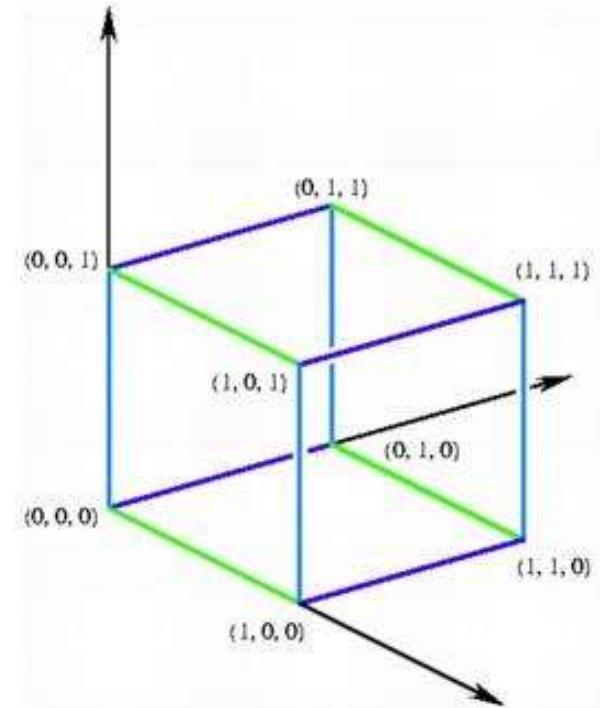


- The model to the left is in fact a generalization of the model to the right
 - How?

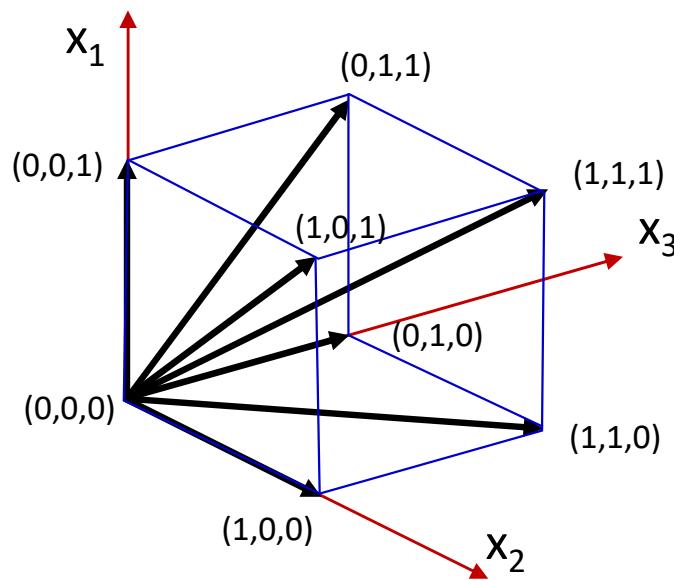
The actual model of computation



- It is a function of N bits
 - An input goes in, a unique value comes out
- The inputs lie in an N -dimensional space
 - Each input dimension can take only two values [0,1].
 - Other values are not defined
- The entire set of all possible inputs lies on the corners of an N -dimensional hypercube
 - The interior of the cube is infeasible
- The function is defined on the corners of this hypercube

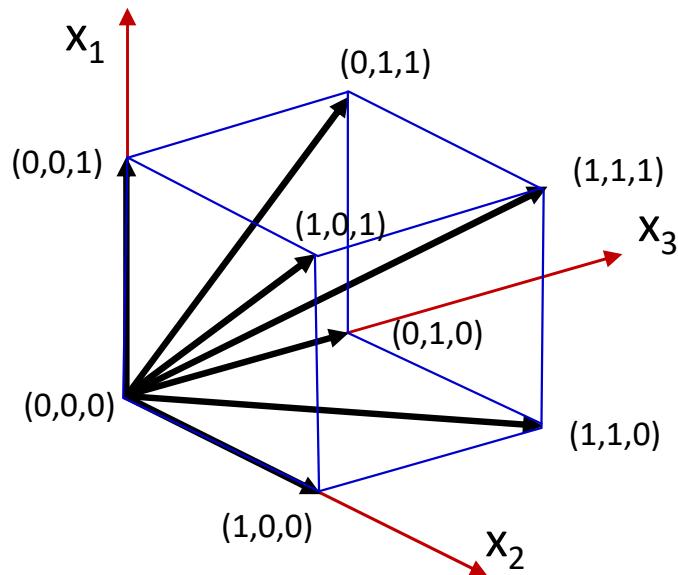
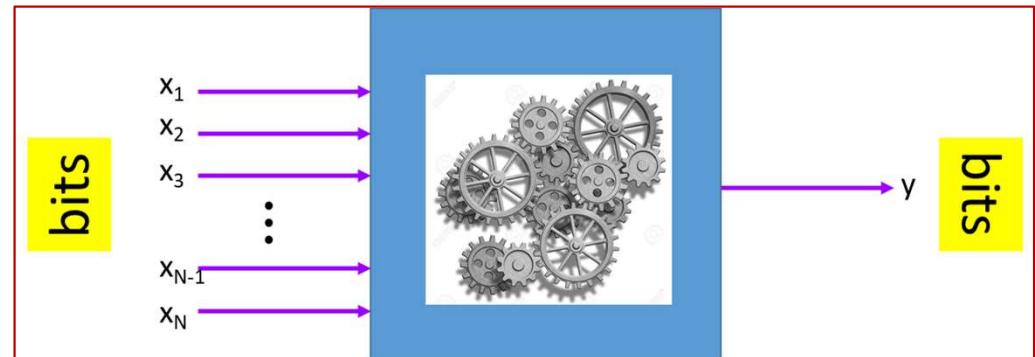


The input space representation



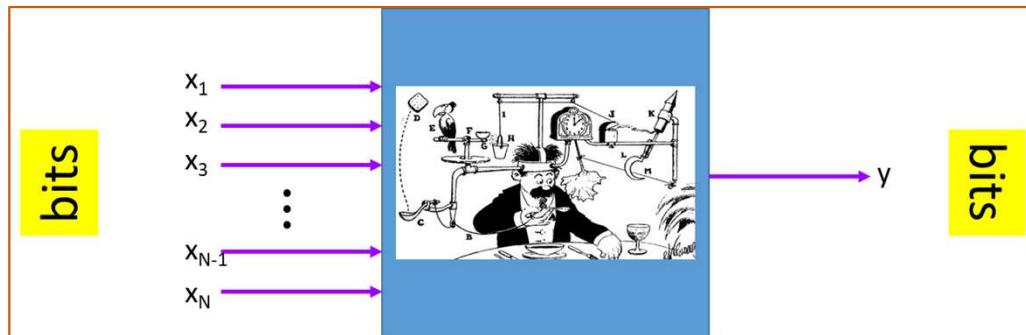
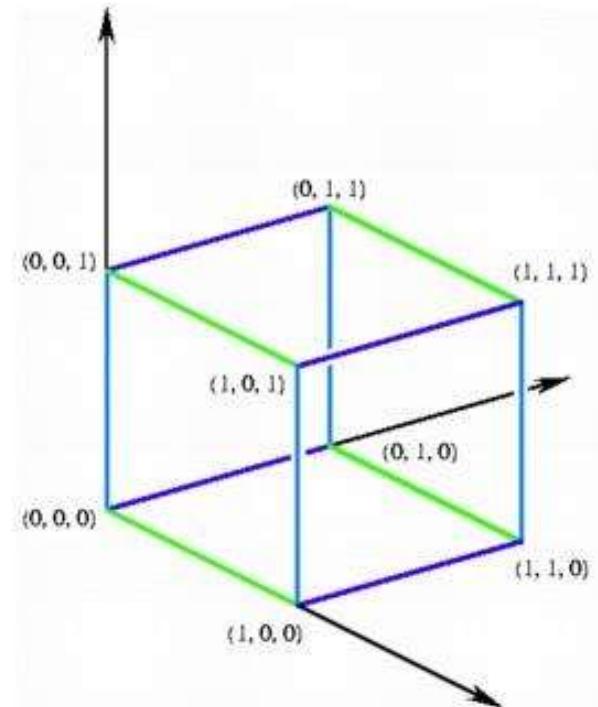
- For a function over N bits, the function is defined over an N -dimensional input space
 - Each input bit represents an orthogonal direction in the space!
- Each feasible input combination is an N -dimensional vector in this space
 - The feasible set of inputs is a countable, finite set of 2^N points.
- In order to fully represent an input, N values must be provided
 - One number for each input coordinate

The function



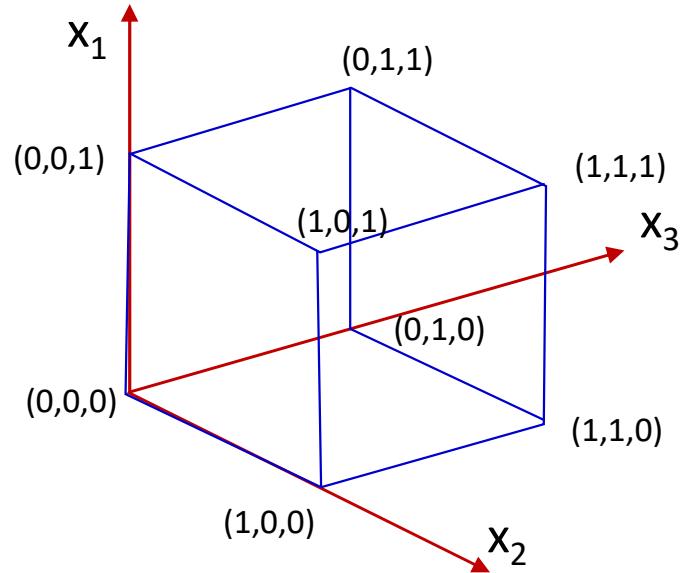
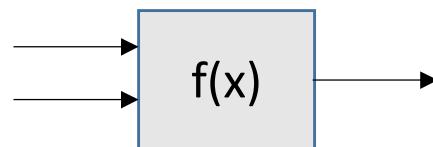
- The algorithm is simply a function that operates on this input space
 - It transforms each input vector to a Boolean value
- Note again that each input vector represents a *single* possible combination of bits
 - When operated on a vector, the function computes the output for that combination of input bits

The unknown function problem



- You are given an uncharacterized function
 - N inputs
 - You know the formulae in it, but don't know what outputs it will produce for any input
- You must characterize the function fully
- How many measurements must you make?
 - “Measurement” : provide an input and note the output

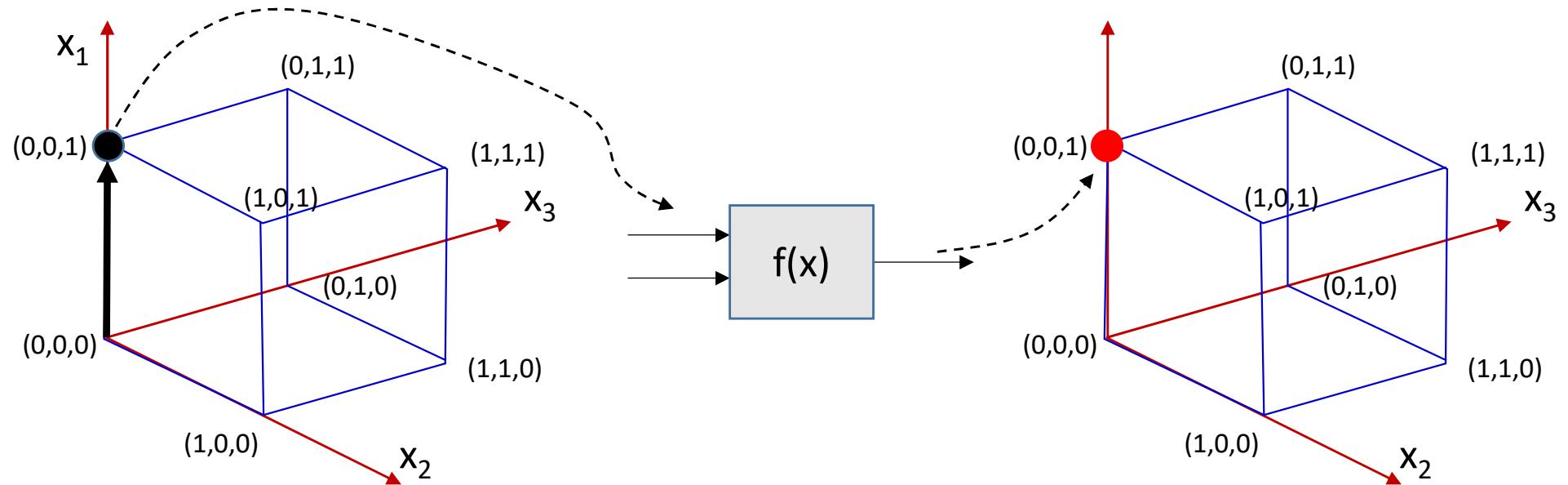
“Discovering” a 2-bit function



Determine this function fully!

- Find out how it responds to any input

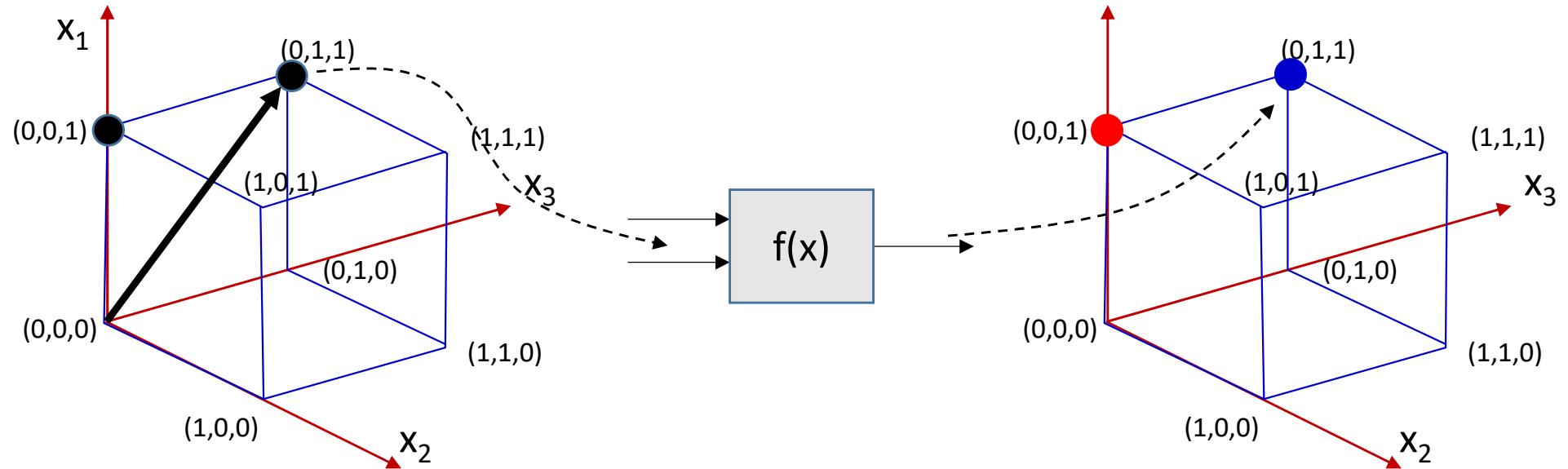
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

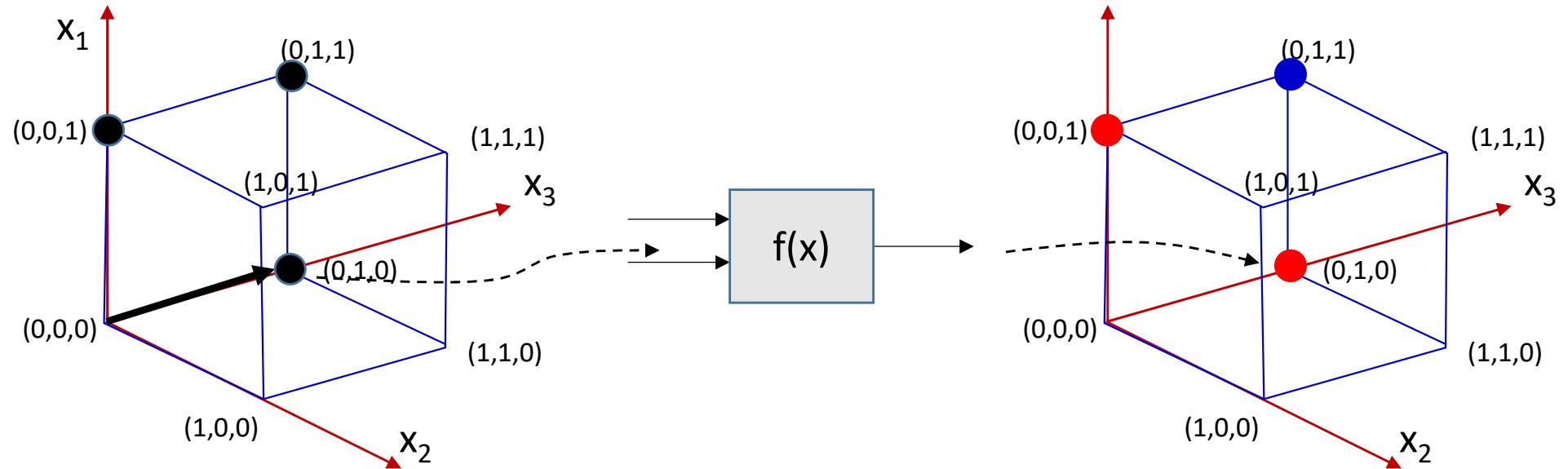
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

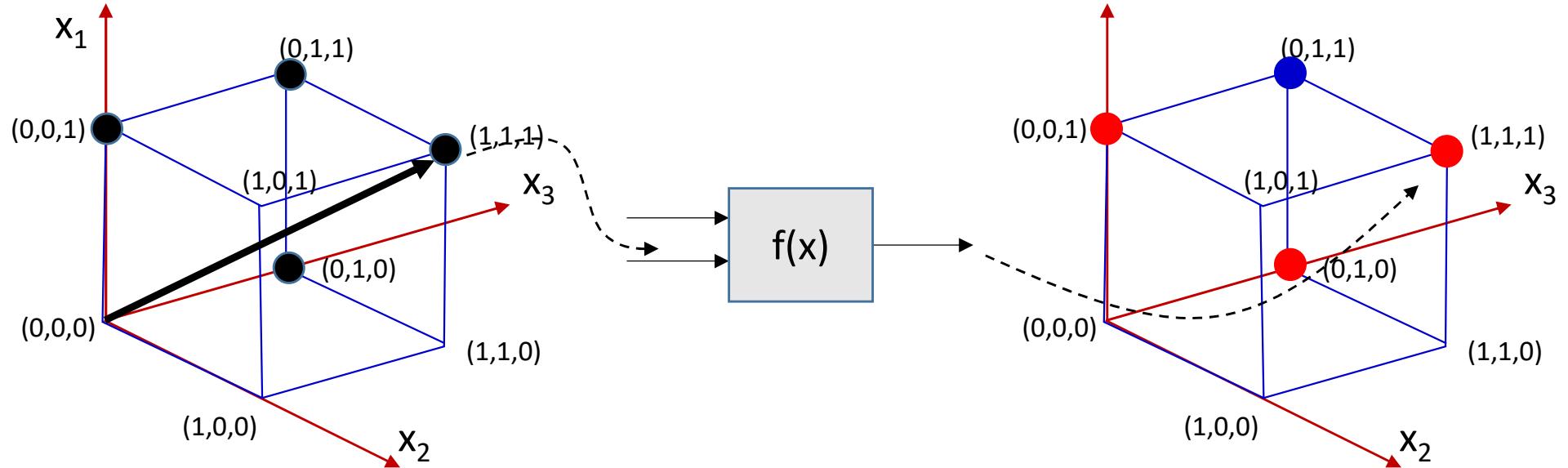
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

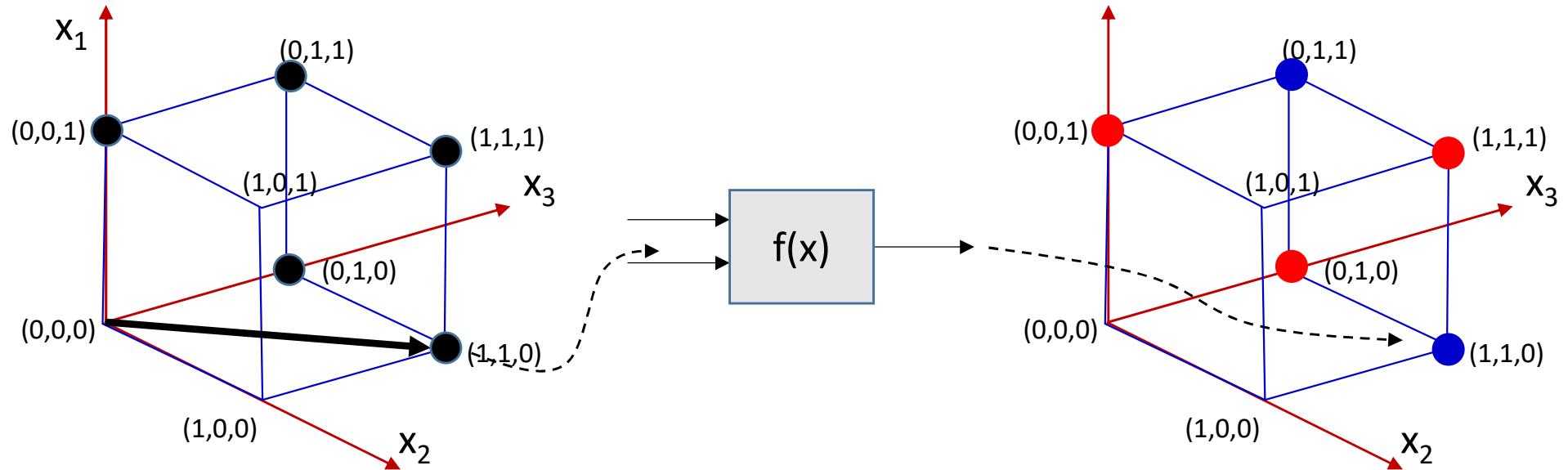
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

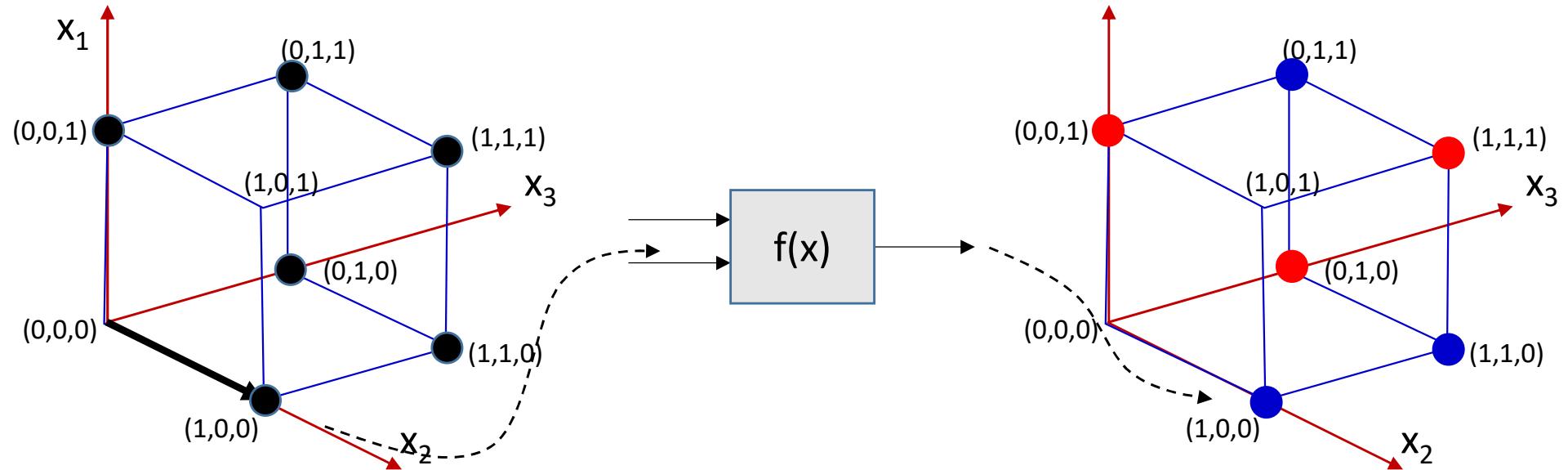
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

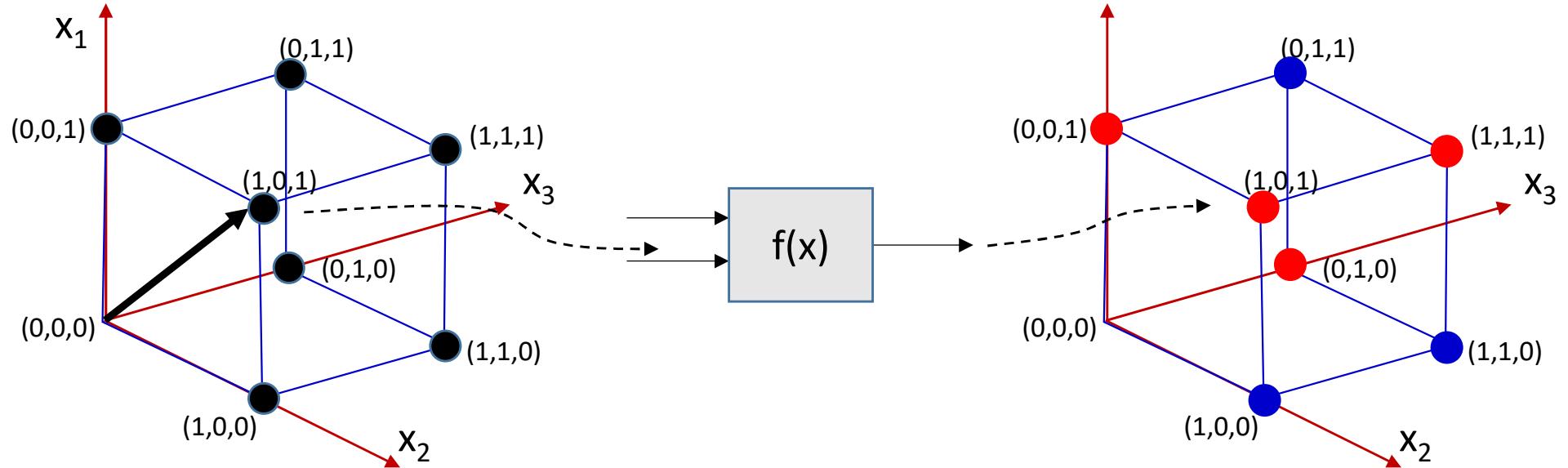
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

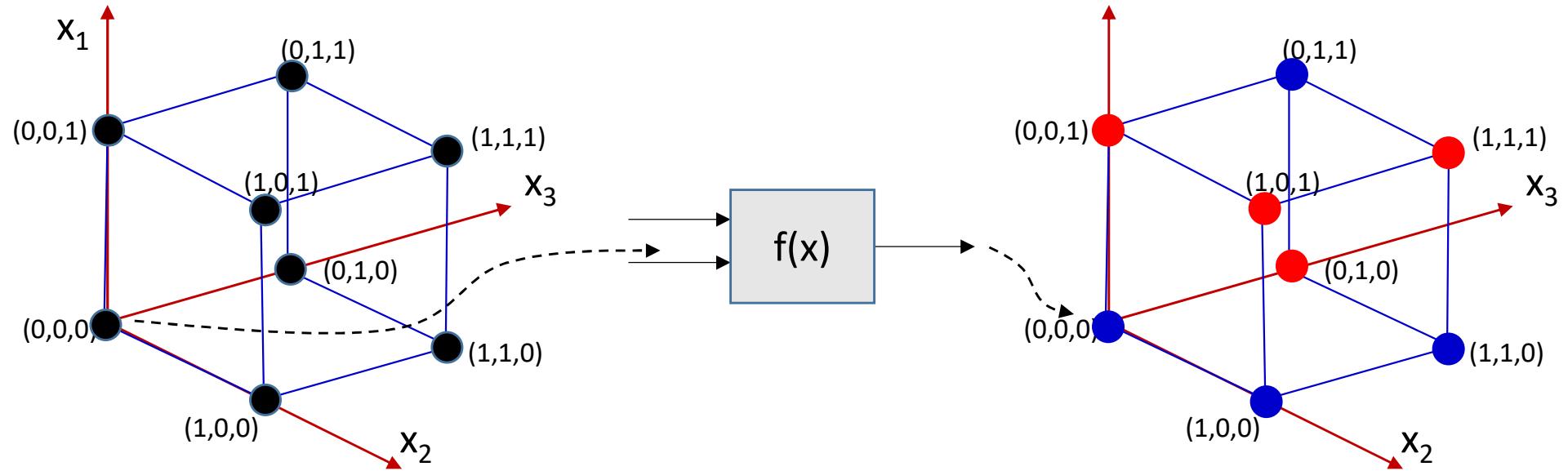
“Discovering” a 2-bit function



Determine this function fully!

- Pass each possible input vector through the function and compute its response

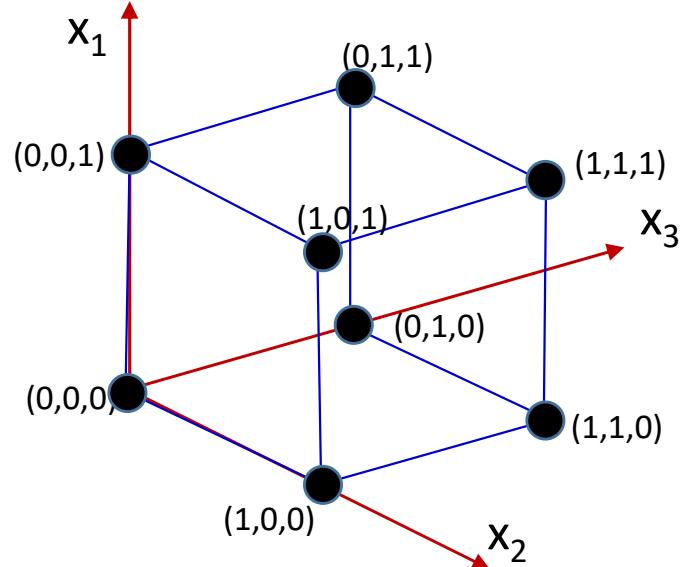
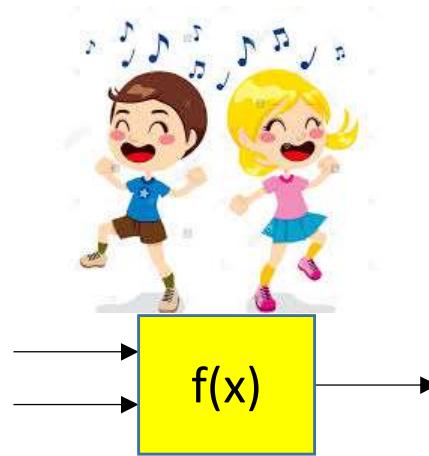
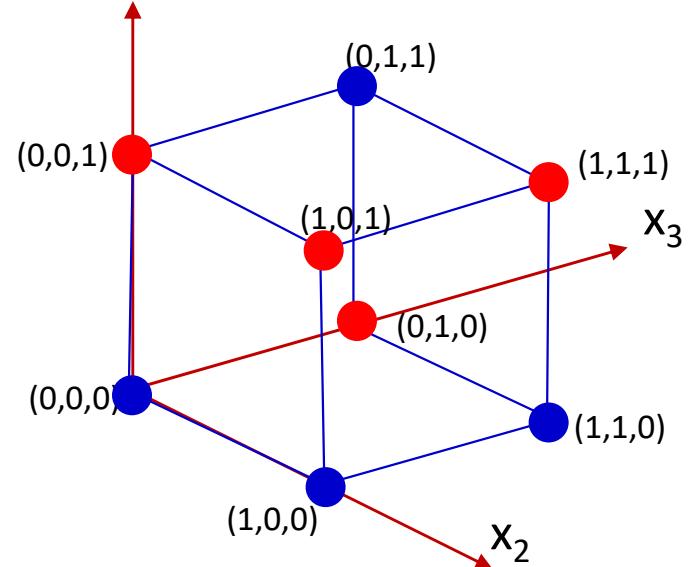
“Discovering” a 2-bit function



Determine this function fully!

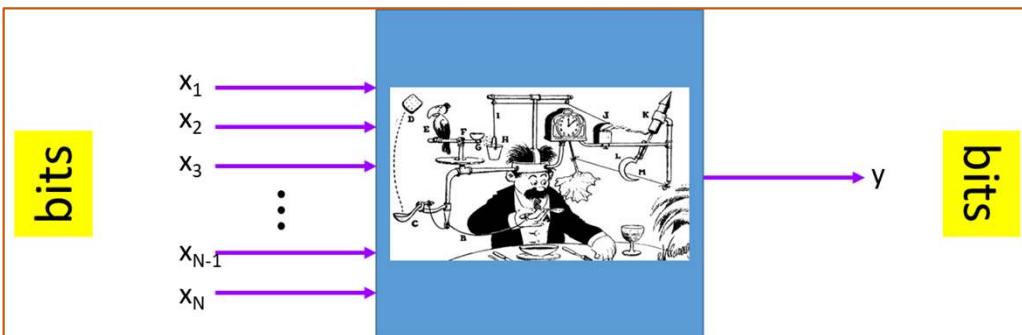
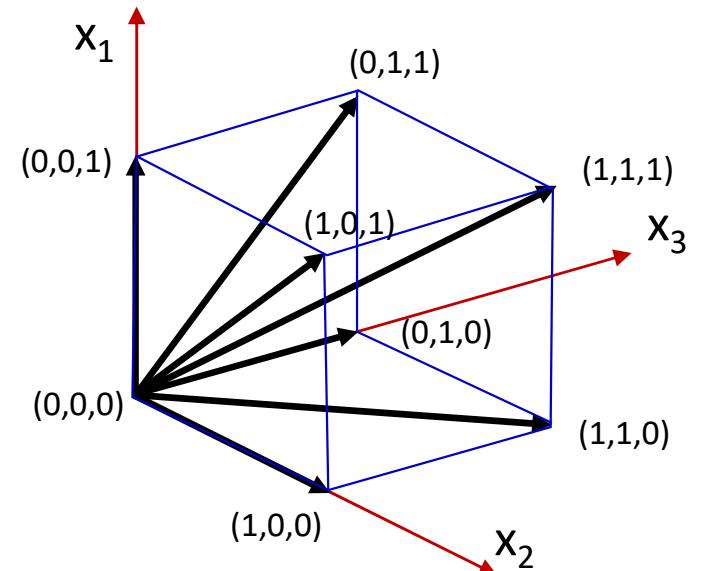
- Pass each possible input vector through the function and compute its response

“Discovering” a 2-bit function



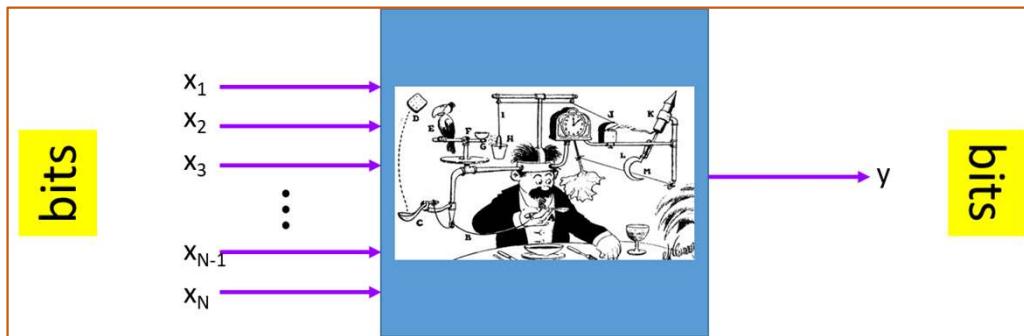
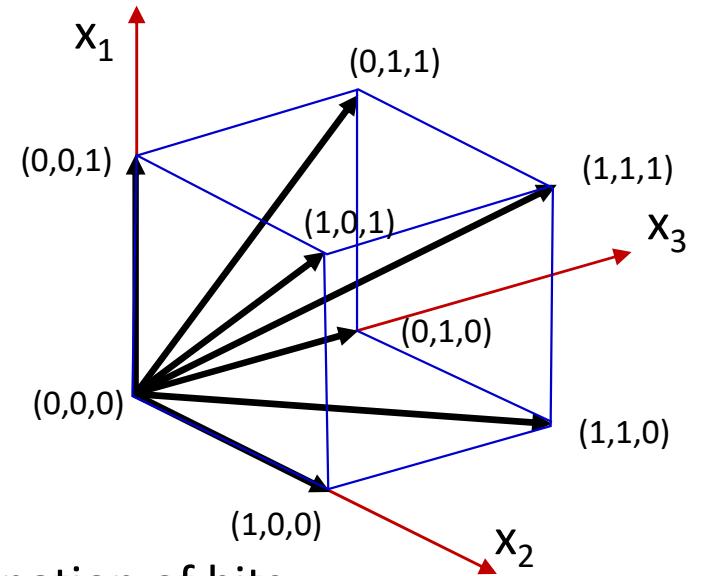
- Pass each possible input vector through the function and compute its response
 - *And now its known*

The N-bit unknown function problem



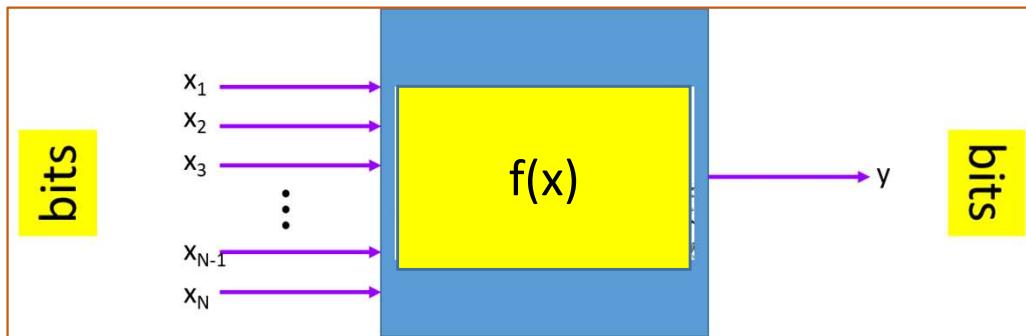
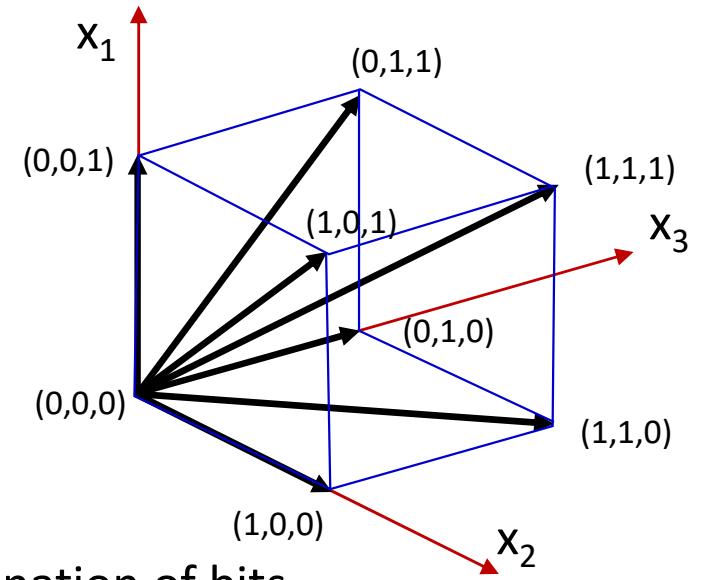
- Recall: For a function over N bits, the function is defined over an N -dimensional input space
- The feasible set of inputs is a countable, finite set of 2^N vectors.
- The function must be individually evaluated at each of these 2^N vectors to define it fully
 - Requiring 2^N evaluations
 - This cannot be reduced

Why this limitation?



- A vector in the space represents only a *single* combination of bits
- The function operates on individual vectors. So, each operation produces the output for a *single* combination of bits
- To determine the function fully, the function must be evaluated on *every* feasible vector in the input space
 - All 2^N feasible input vectors

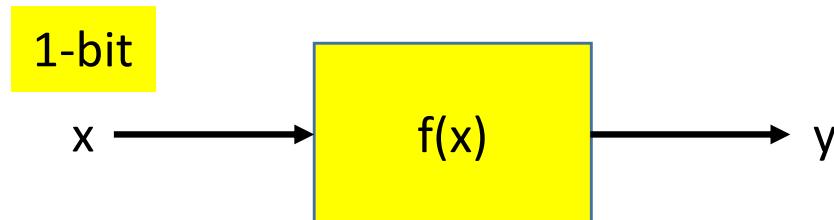
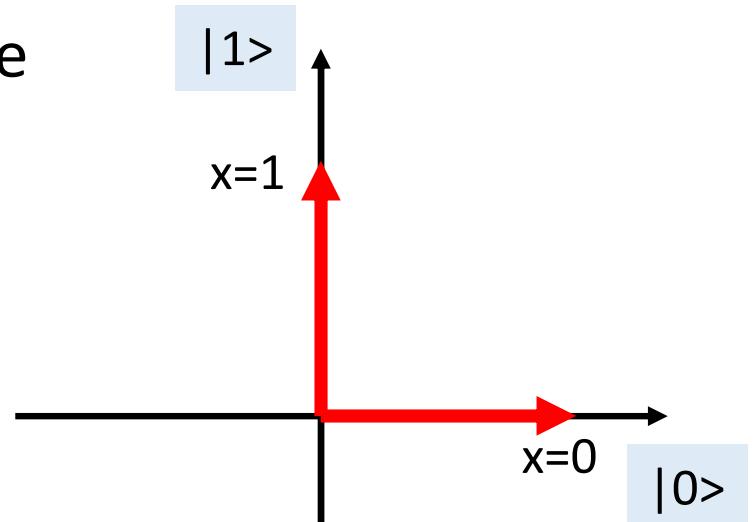
Why this limitation?



- A vector in the space represents only a *single* combination of bits
- The function operates on individual vectors. So, each operation produces the output for a *single* combination of bits
- To determine the function fully, the function must be evaluated on *every* feasible vector in the input space
 - All 2^N feasible input vectors
- Can we *change* the mathematical paradigm itself to change this scenario?
 - Change the representation paradigm itself to make things more efficient, somehow
 - **E.g have a single function computation compute the outputs for multiple combinations of input bits?**

A different approach

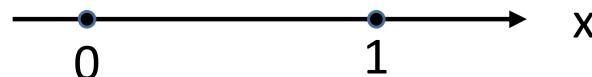
- **Modify the representation**
- Instead of *each bit* representing a (orthogonal) coordinate direction we will make *each combination of bits* represent a orthogonal coordinate direction!
- Even 1 bit is now in a 2-D input space



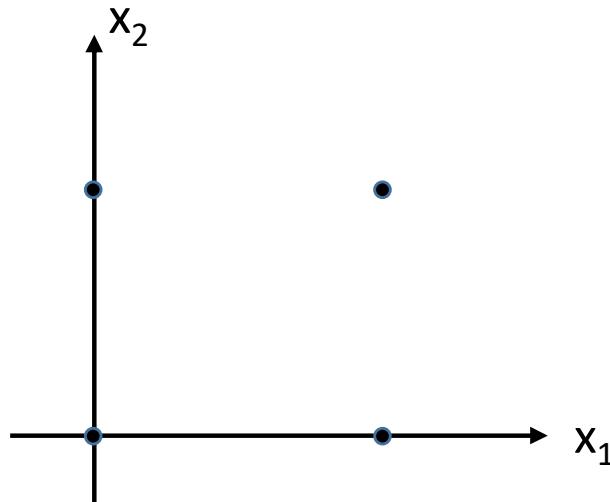
Note that this is a fundamentally different representation from standard representations!

A different approach

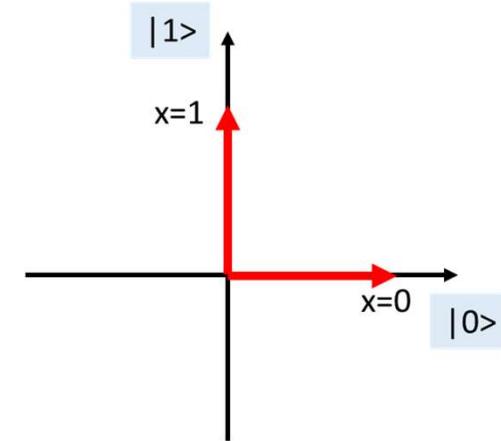
- 1 bit: Old representation



- 2 bits: Old representation



- 1 bit: New representation

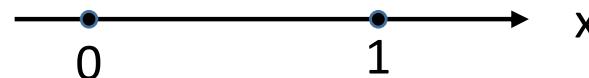


- 2 bits: New representation

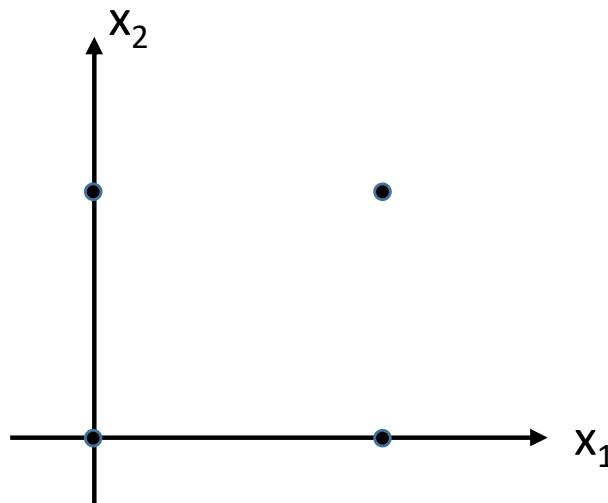
Can't really visualize
(why)?

A different approach

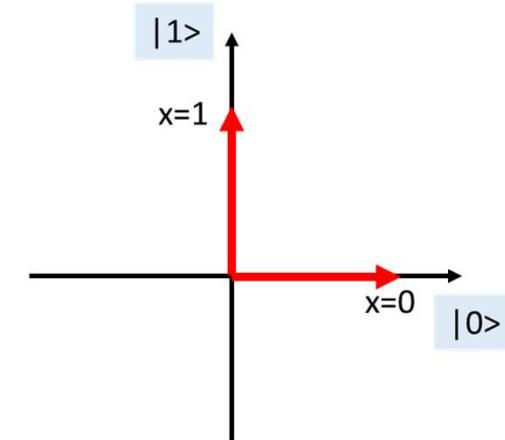
- 1 bit: Old representation



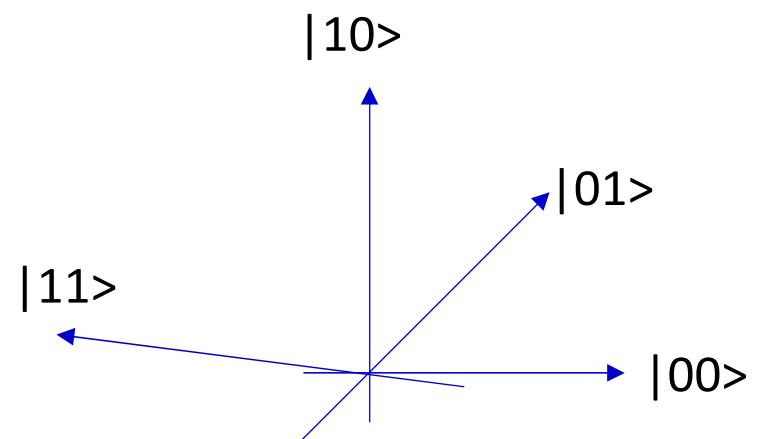
- 2 bits: Old representation



- 1 bit: New representation



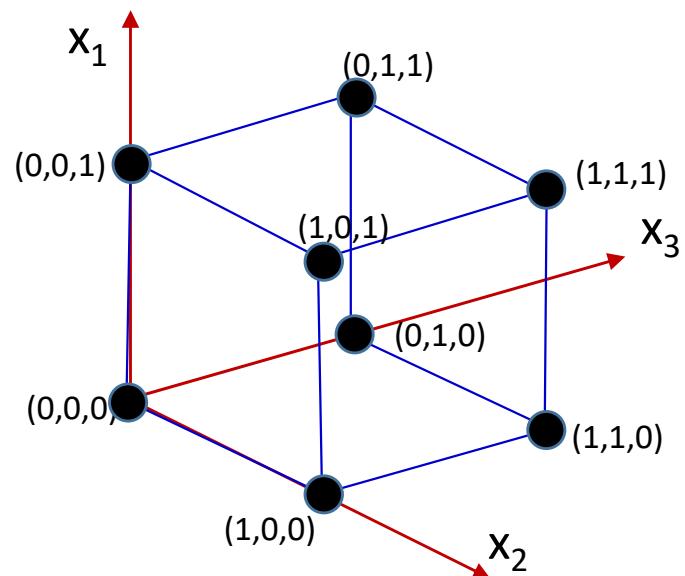
- 2 bits: New representation



Lame attempt at visualizing 4D

A different approach

- 3 bits: Old representation

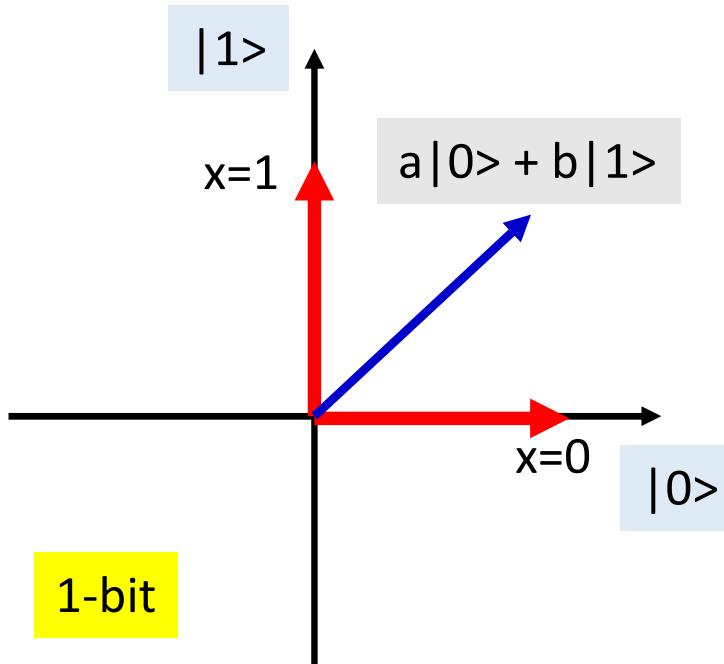
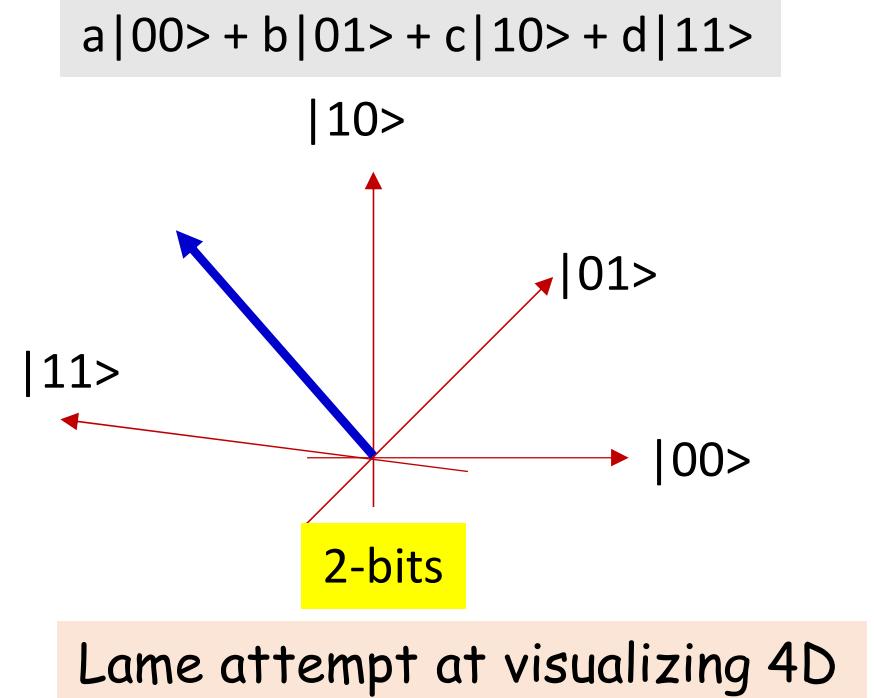


- 3 bits: New representation

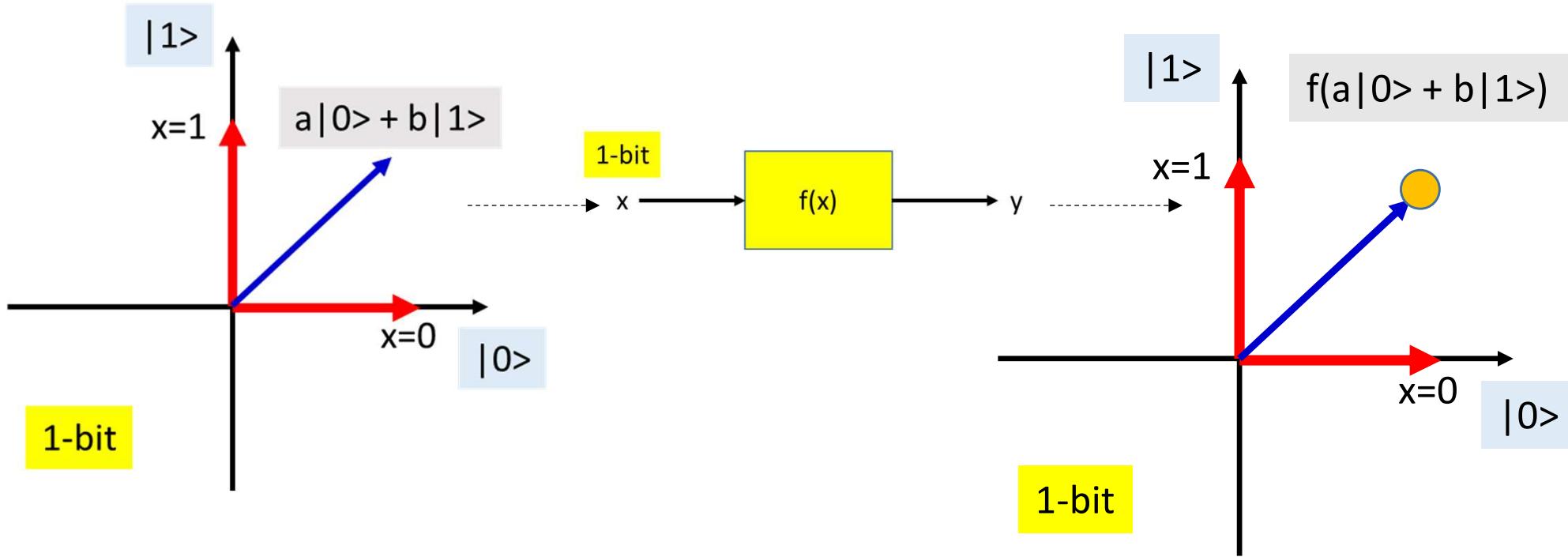
Can't really visualize
(why)?

The modified representation

- A vector in this representation is a linear, *unambiguous* combination of *all* input bit patterns
- Unambiguous because we set each bit pattern to be an *orthogonal* direction to every other pattern

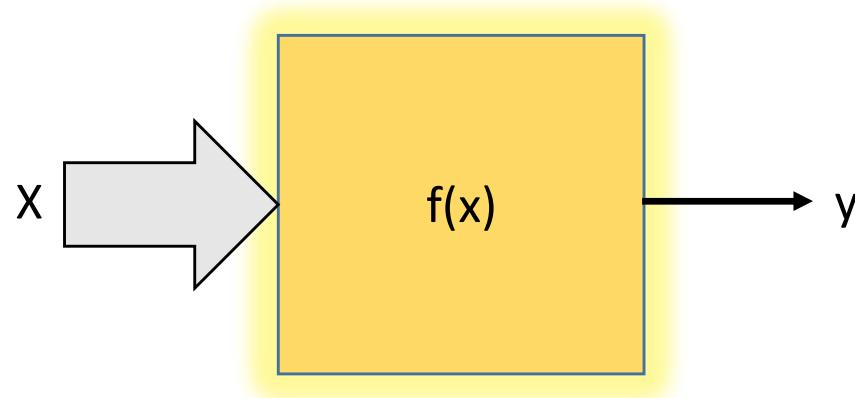


Working with the modified representation



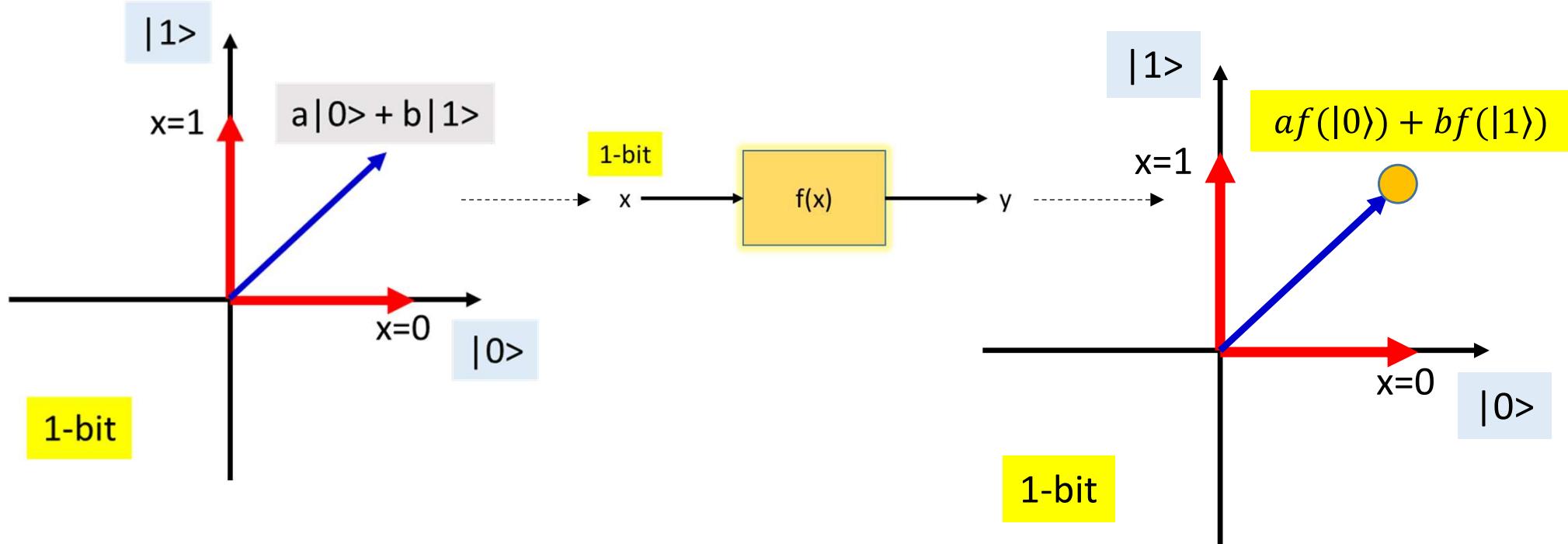
- When the function operates on a vector, it operates on a linear combination of all possible input values
 - How does this help?
 - Not directly, we need to make some assumptions

Adjustment 1: Linear functions



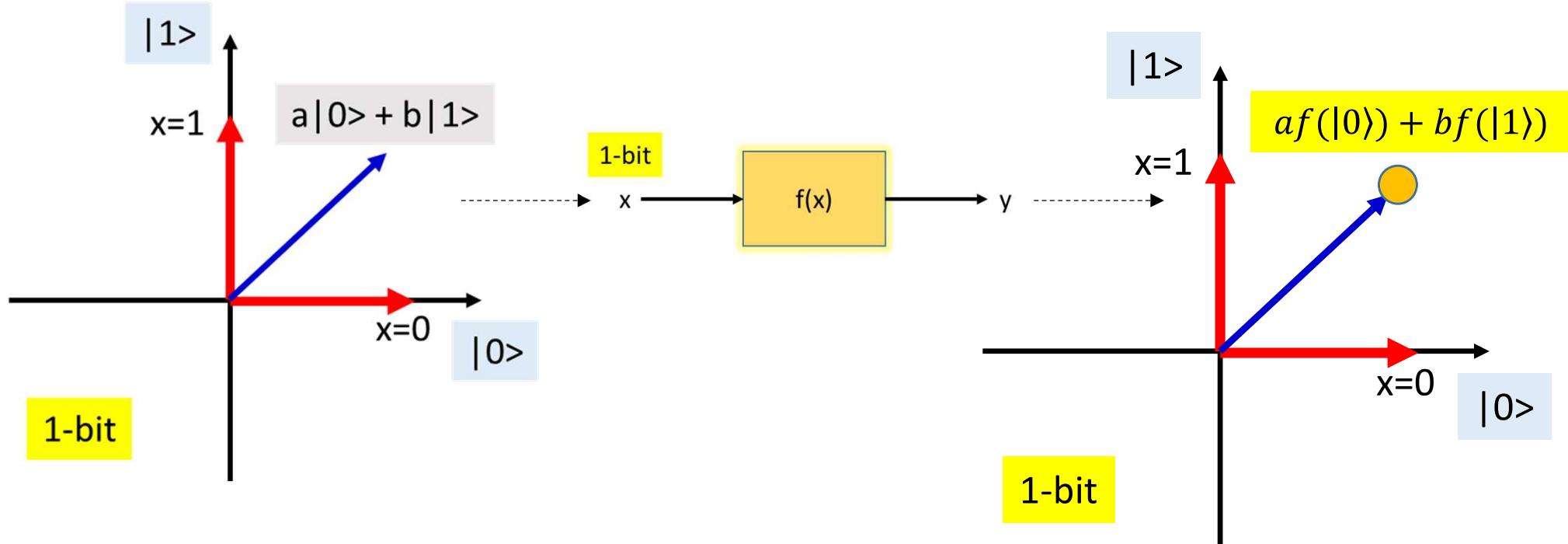
- A function $f(x)$ is *linear* if
$$f(ax + by) = af(x) + bf(y)$$
for any two scalars a and b
- We assume our function $f(x)$ to be linear
 - As it happens, Boolean functions can always be cast as linear operators

For linear $f(x)$



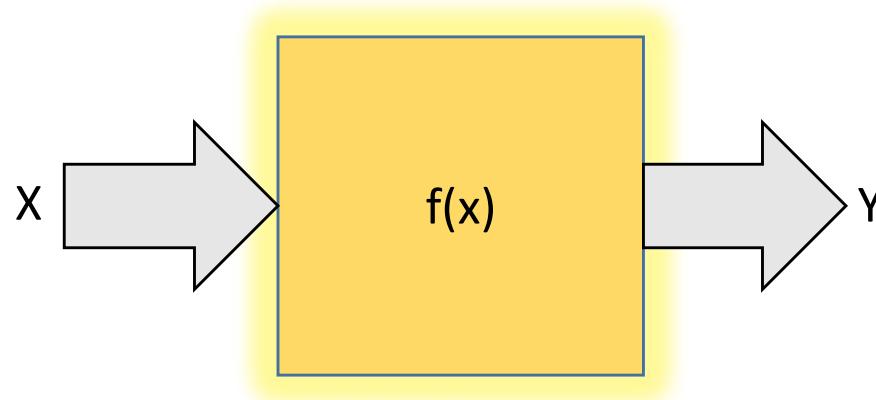
- For linear $f(x)$, the output is a linear combination of the outputs for the individual bit patterns!
- By simply measuring the output at a *single* input vector, we obtain the combined outputs for *all* input bit patterns!
 - *One evaluation!!* (As opposed to 2^N)
- But are we done yet?

For linear $f(x)$



- The combined output for the individual bit patterns doesn't tell us what the output is for any *single* bit pattern
 - I.e. you can't divine $f(|0\rangle)$ and $f(|1\rangle)$ from $af(|0\rangle) + bf(|1\rangle)$
- We need the output to maintain the distinction
 - The function must separately compute the output for each input combination and keep the answers distinct

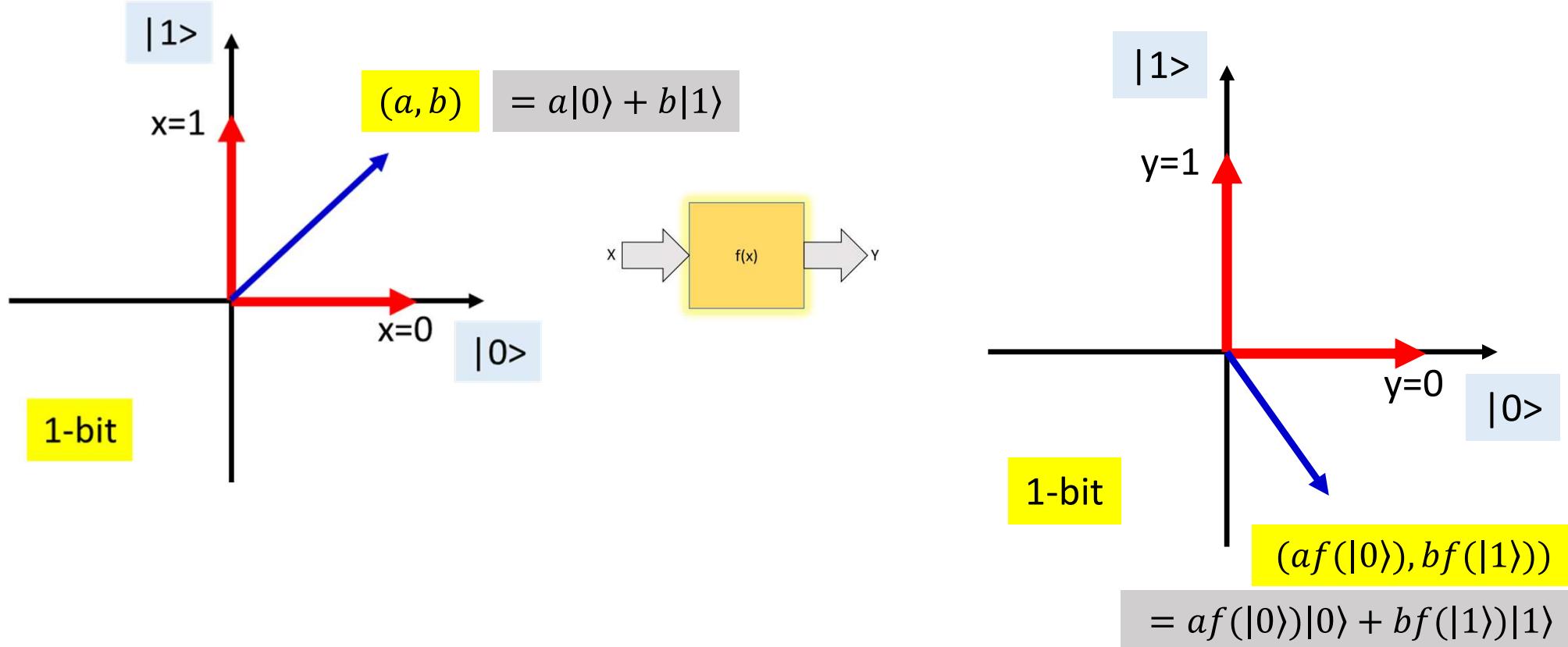
Adjustment 2: Vector functions



- The output too is a vector

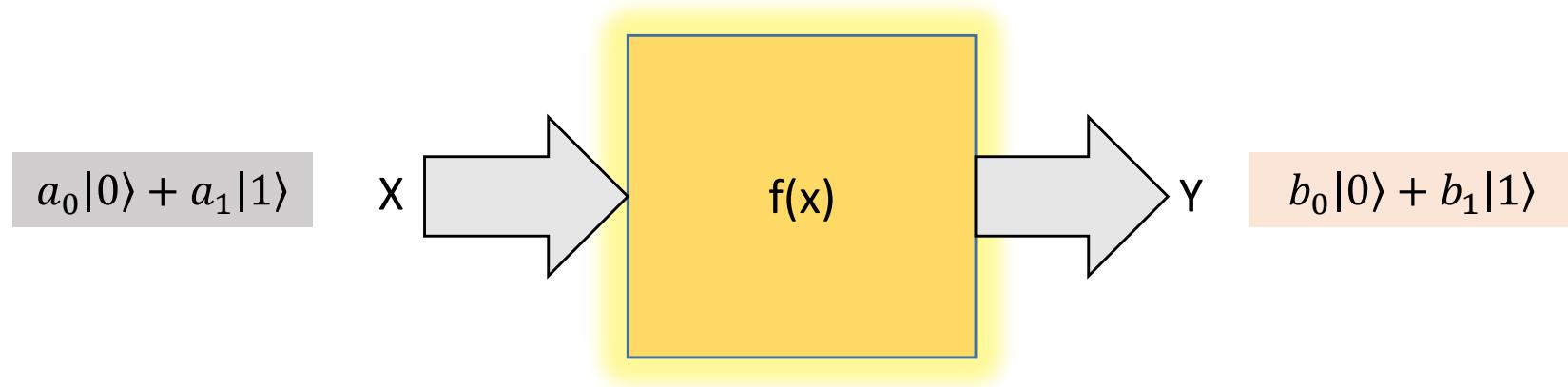
$$f(a|0\rangle + b|1\rangle) = af(|0\rangle)|0\rangle + bf(|1\rangle)|1\rangle$$

For linear $f(x)$



- Instead of merely computing a value at the vector, the function moves the vector to a new position, where the individual components represent the responses to individual bit patterns
 - Amazingly enough, every Boolean function can be recast in this manner

Adjustment 2: Vector functions



- $f(\cdot)$ is a linear transform

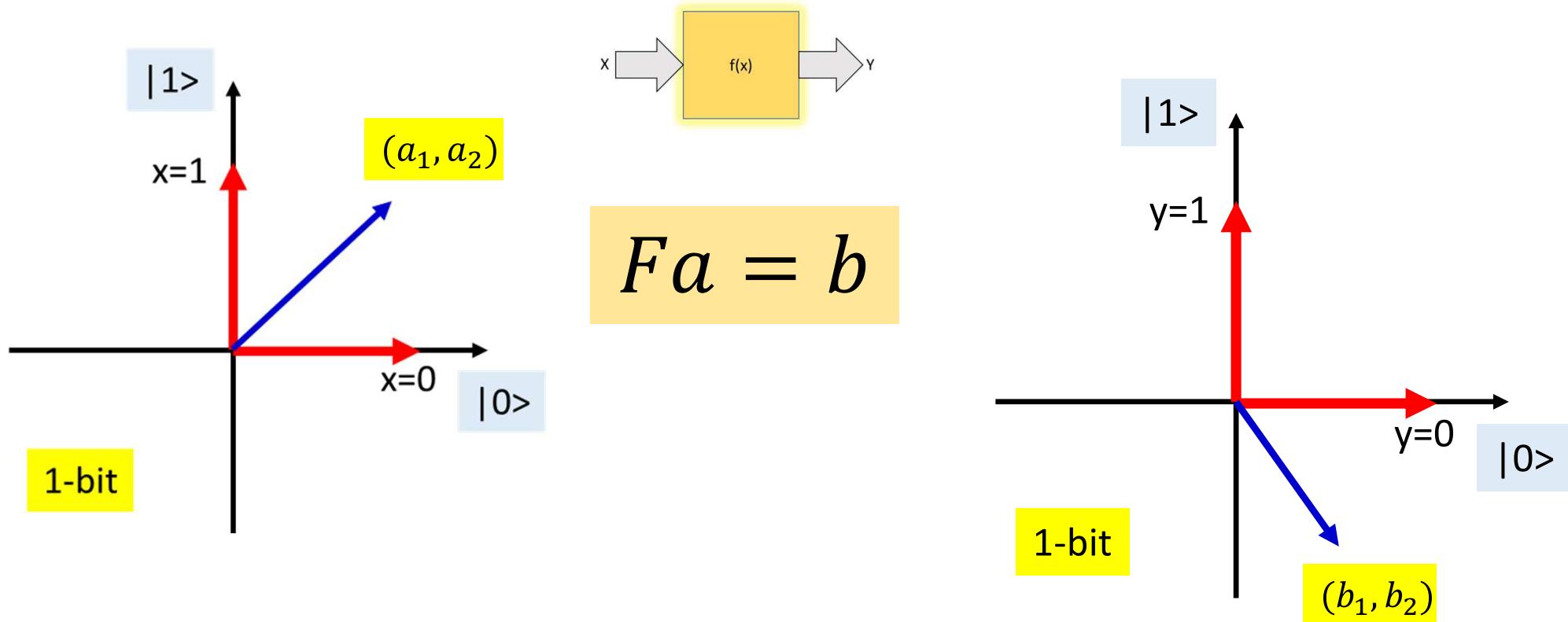
$$f \circ \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

- More generally:

$$f \circ \begin{bmatrix} a_{00\dots 0} \\ a_{00\dots 1} \\ \vdots \\ a_{11\dots 1} \end{bmatrix} = \begin{bmatrix} b_{00\dots 0} \\ b_{00\dots 1} \\ \vdots \\ b_{11\dots 1} \end{bmatrix}$$

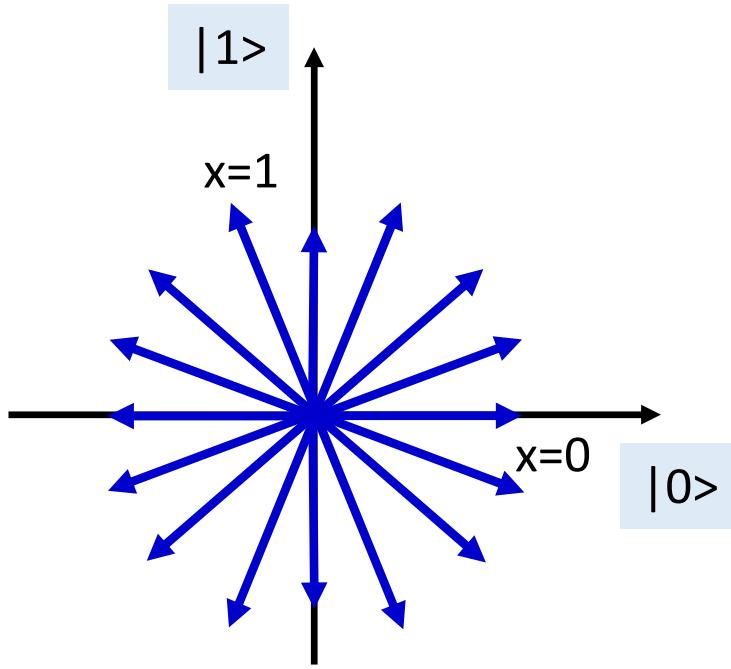
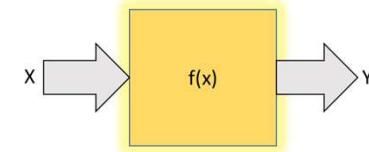
In other words $f()$ is a matrix operator.
Note that this is a linear operation

For $f(x)$ to retain information

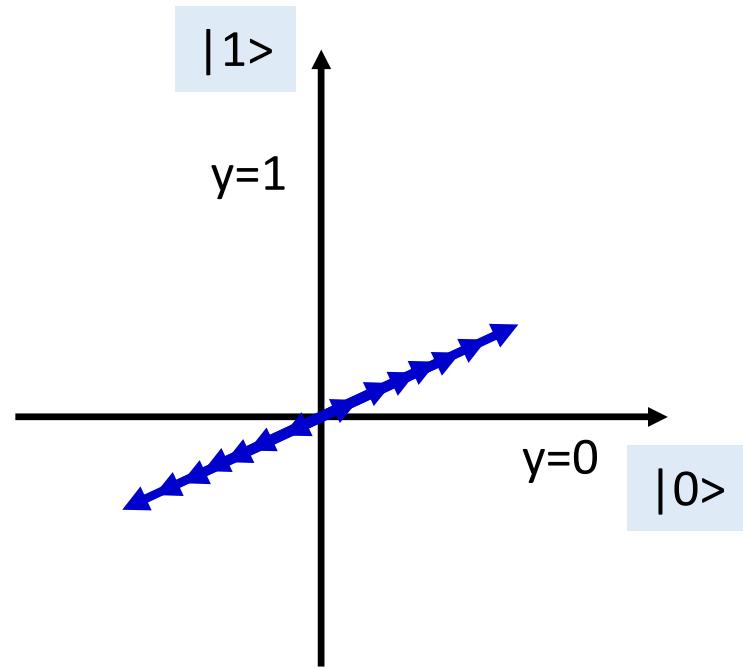


- The function is a linear transform that transforms an input vector to an output vector
 - In the process, it determines the output for *every input bit pattern in one step!!*
 - A single computation uncovers the entire function!
 - But there is one more requirement... (what)?

For $f(x)$ to retain information

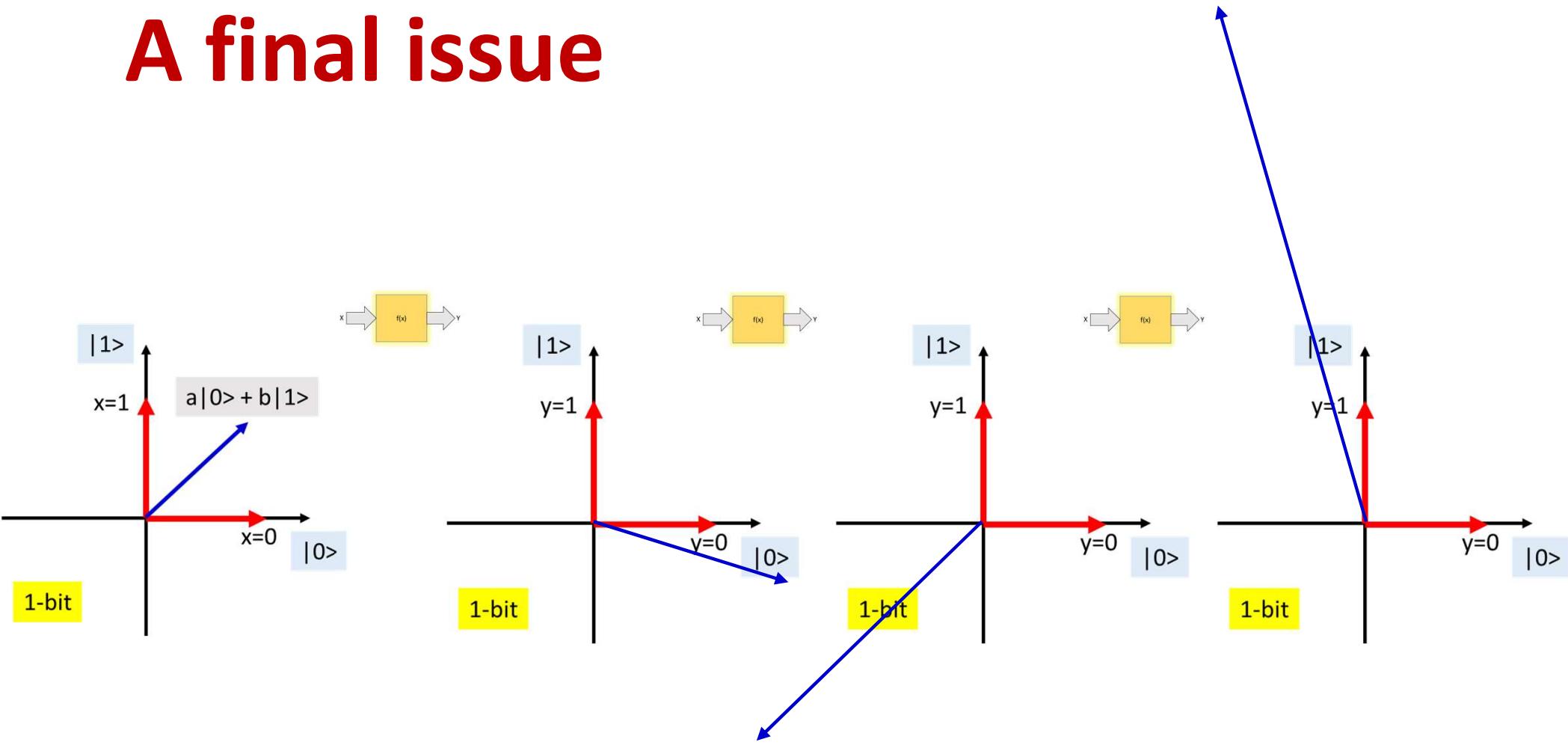


$$Fa = b$$



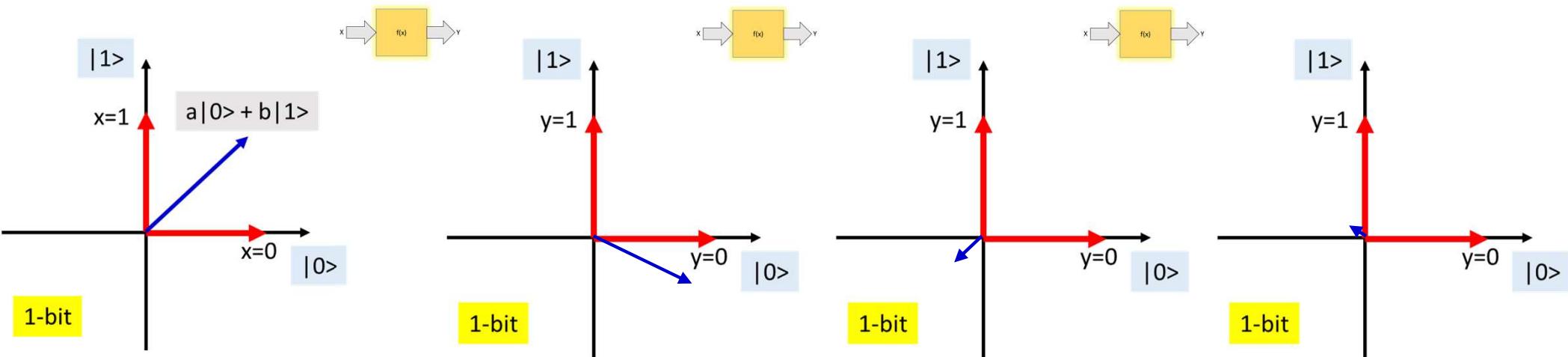
- F must be full rank
 - Otherwise, we cannot recover the contribution of all components of the input vector
 - I.e. we cannot resolve the contributions of all bit patterns to the result
- In other words, F must be *invertible*!!

A final issue



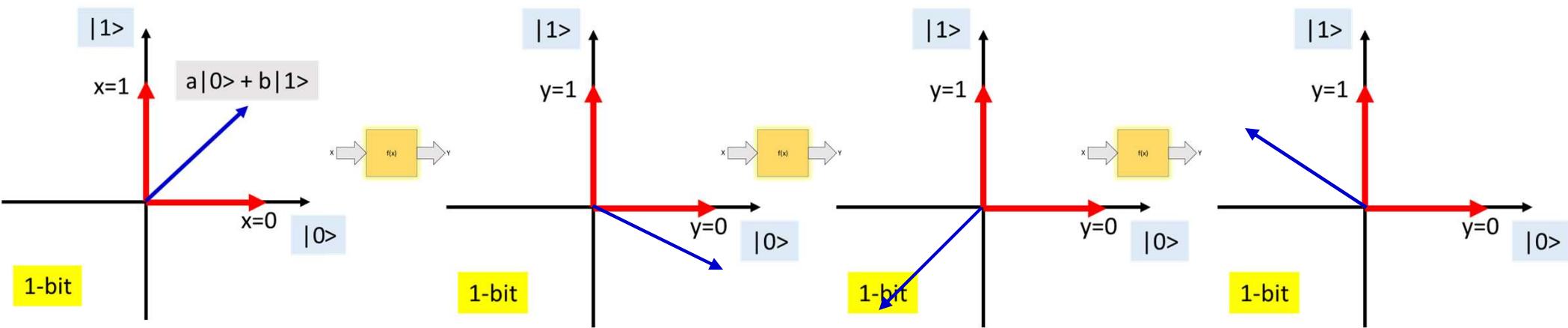
- Repeated applications of linear transforms can make a vector longer and longer and blow up...

A final issue



- Repeated applications of linear transforms can make a vector longer and longer and blow up...
- ... or shrink and vanish

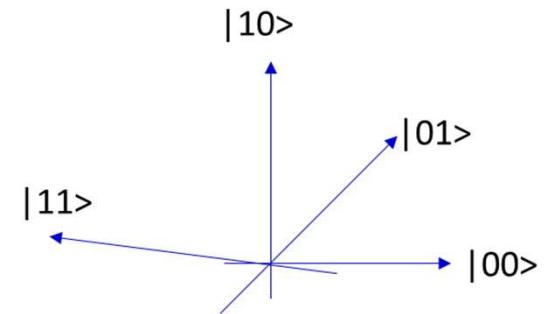
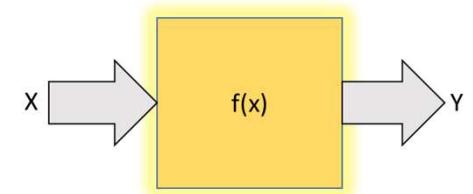
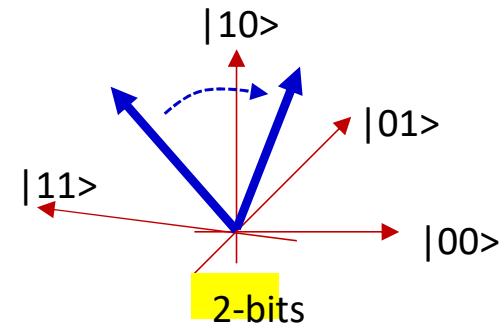
The solution



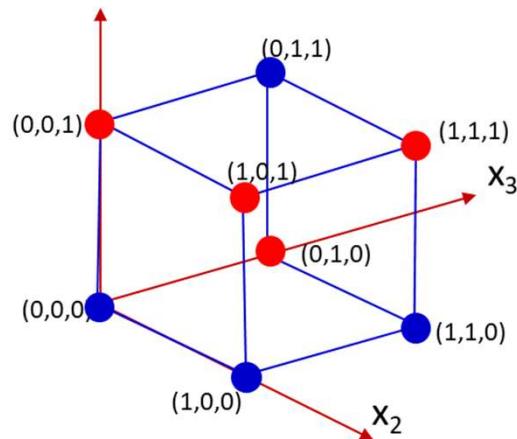
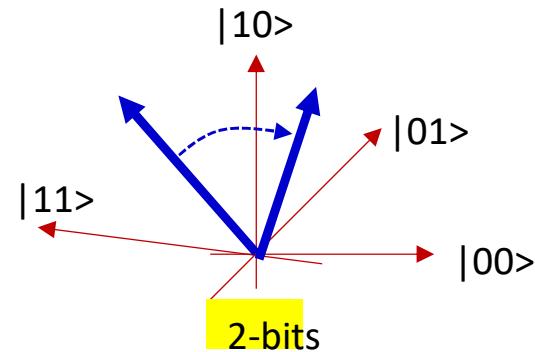
- F must not change the length of the vector
- i.e. it must be a rotation transform!

The new paradigm

- Modified representation: Every bit *pattern* is an orthogonal direction of the input space
 - A vector in this space is a linear combination of all bit patterns
- The function being computed is representable as an invertible linear transform
 - More specifically a rotation
- Evaluation of the function on a single vector can compute the output for every possible bit pattern, in an identifiable way

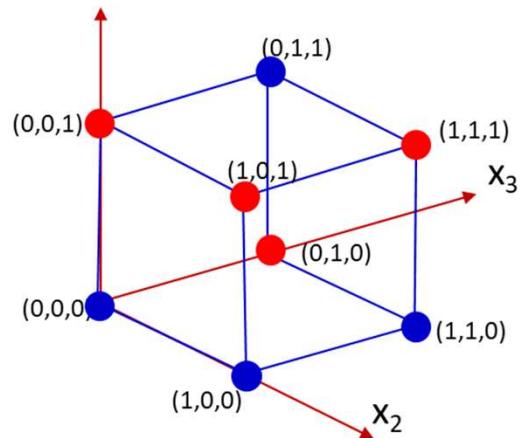
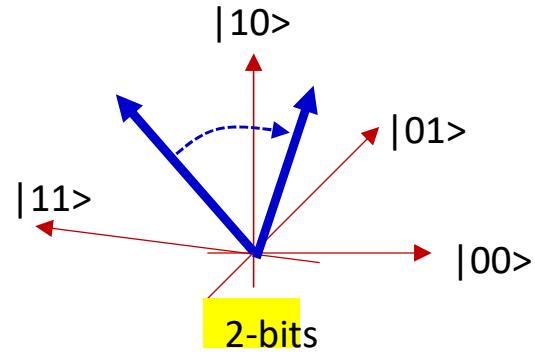


Old vs. the new paradigm



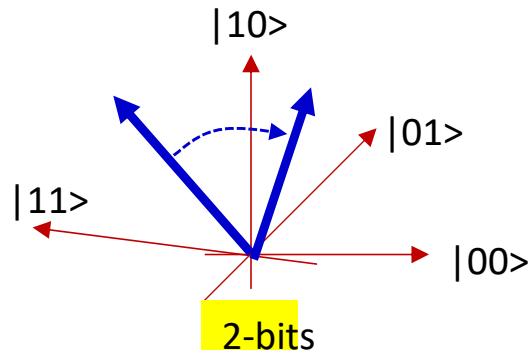
- Each bit is a coordinate dimension
- Must explicitly evaluate function for every input to fully determine it
- In reverse: Given only the output, must evaluate every input to determine which one generated it
 - 2^N computations
- Each bit pattern is a coordinate dimension
- A single evaluation fully determines the function
- In reverse: Given an output, determining which input produced it is a single-step computation
 - Because computation is reversible

Where is this useful



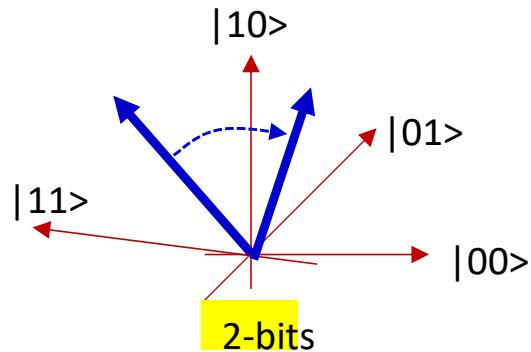
- Satisfiability problems
 - Does any bit pattern produce the output 1
- Search problems
 - Is any bit pattern in my library exactly equal to 11001010
 - Equivalent to SAT problems
- Combinatorial optimization problems
-
- Any problem that can be set as a SAT problem

What are the practical issues?



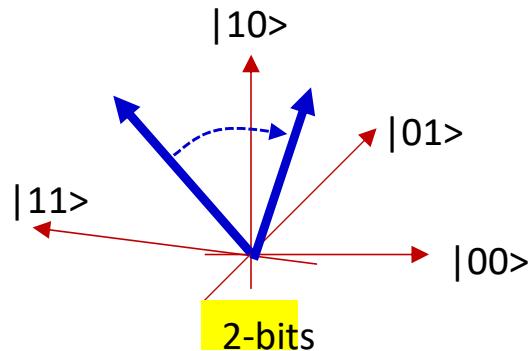
- Is this practically realizable?

What are the practical issues?



- Is this practically realizable?
- A conventional (classical) computer requires a *single* N-bit register to represent a value
 - A function takes in a single N-bit value and produces a single bit
- The new representation requires 2^N numbers to represent a single value!
 - For even N=100 bits, this requires ~ 1000 numbers
 - A function takes in 2^{100} values and produces 2^{100} values
 - I.e it's a 2^{200} -valued transform!
 - Which is why it's not a very *useful* way of thinking about things
- Is there a *parsimonious* way of representing a 2^{100} component vector without taking up the entire universe?

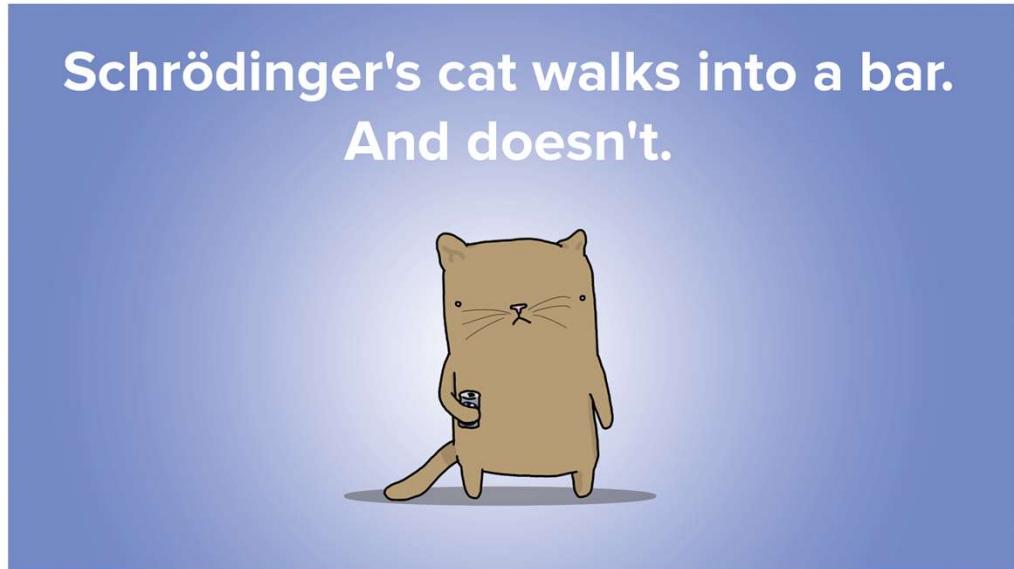
What are the practical issues?



Fact that may only interest me:
"Graham's number" is a number that's so large there isn't enough space in the universe to write it..

- Is this practically realizable?
- A conventional (classical) computer requires a *single* N-bit register to represent a value
 - A function takes in a single N-bit value and produces a single bit
- The new representation requires 2^N numbers to represent a single value!
 - For even $N=100$ bits, this requires ~ 100 numbers
 - A function takes in 2^{100} values and produces 2^{100} values
 - I.e it's a 2^{200} -valued transform!
 - Which is why it's not a very *useful* way of thinking about things
- Is there a *parsimonious* way of representing a 2^{100} component vector without taking up the entire universe?

Enter.. The cat!!



- Introducing Quantum, the cat

