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The CHSH game
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* Alice and Bob live in separate cities and may not communicate

 The casino sends each of them a random bit

o Need not be identical

* They must inspect their bit and output a value
o Alice outputs a, Bob outputs b

* They get a prize of $1.00 if:
o Both got “1” from the casino and their outputs are such thata # b
o Any other condition ([0,1], [1,0], [0,0]) they must output a ==

 What is the best strategy, and what is their expected earning?




The CHSH game with a qubit
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* Before moving to separate cities, Alice and Bob split
a pair of entangled bits in the Bell State

* Now what is their best strategy?



e

* Alice uses two sets of bases for measurement: 0/1 and +/- (at 45°)

o If Alice gets a 0 from the casino she measures using 0/1 and outputs the value
o Else she measures using +/- and outputs the value

51
 Bob uses two sets of bases: at [n =

o If Bob gets a O from the casino, he measures using [5’?”] and outputs the value

: - 3
o Else he measures using the [{,f] and outputs the value



The CHSH inequality

e The Clauser Horne Shimony Holt (1969):

* For classical computers
E[0,0] + E[0,1] + E[1,0] — E[1,1] <2

o Where E|[x, y] is the probability that Alice and Bob “agree” (i.e. a = b) when they receive
x and y respectively

Note: The maximum possible value under perfect knowledge is 3. The closer you are to 3, the
more money you make

e Using quantum entanglement
E[0,0] + E[0,1] + E[1,0] — E[1,1] < 22
o Regardless of the actual qubit shared

o Over any policy / measurement strategy

o Thisis 2.8, which is very close to the max possible value of 3

* Qubits, which are useless for communication, can still be used to create
correlations which can be exploited

o They can “enhance” asymmetries in the system



Lesson — you cannot
communicate

* But you can correlate

* And correlation can be used for profit...



The Determinism Conundrum

* Schroedingers equation

hZ
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* The term in the square brackets is the Hamiltonian.

o Itincludes a potential term V' (x, t) which can be
manipulated to manipulate the Hamiltonian itself

» V2 is the Laplacian
* x is 3D position
 Y(x,t) is the wave function for a particle



Is there a Higher Knower?

« Y(x,t), when measured, collapses into one of the many possible
states

* Was this state fore-ordained?

e Einsten, Podelsky and Rosen (EPR) — yes!
o Local realism: The fate of one qubit cannot affect another faster than light

o Ergo: The “entangled” qubits were foreordained to their state by some
(possibly ancient) latent variable. There is no “entanglement” per-se...




Is there a Higher Knower?

 Y(x,t), when measured, collapses into one of the many
possible states

* Was this state fore-ordained?

 The CHSH game uses entangled qubits to prove otherwise

o Einstein, Podolsky, Rosen: The two cubits were independently fore-
ordained by a common cause to fall the same way

o Bell: If so, their individual measurements (and their bases) should
not have any influence on the other if they are randomly chosen
= P(match) <=0.75
o P =0.85implies actual entanglement, and genuine randomness in
measurement



What does the higher-knower

know?

* The probability distribution in ¥(x, t) may be known
for all x at some t.

* But

hZ
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* This is solveable.

* If P(x,t) is known at any time it is known for all time!!!
o The wavefunction is fully determined for all time

o The universe is deterministic in probability



Quantum gates
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* Operate on N-Dimensional phasors
o Inacomplex N-D complex Hilbert space

ay

o Theinputis an N-D phasor, the output too is an N-D phasor

* The “gate” is itself a transform
o A unitary transform

* So how many inputs does the gate have, and how many outputs?




TWO QUBIT GATES

Classical two-bit gates

Quantum

Input =) 5 | ., cate ——> Output

ot

 Two-bit classical gates take in 2 bits, and output one or two bits

o They operate on a two-dimensional input space

 What dimensionality of space do two-qubit quantum gates operate on



TWO QUBIT GATES

Quantum

|Y) = ago|00) + ag1]|01)+a,9|10)+a,1|11) —» .
2-bit gate

—> |@) = byo|00) + bgq|01)+b;(|10)+by,]|11)

qubit——> Quantum [——*>qubit
qubit—» 2-bit gate [ ——>qubit

 Two-bit classical gates take in 2 bits, and output one or two bits

o They operate on a two-dimensional input space

 What dimensionality of space do two-qubit quantum gates operate on
o Four dimensional inputs and outputs

o But physically still represented by two qubits (thanks quantum!)



Two-qubit gates

) = G00l00) + agg|01)+are]10y+ars|11) —»f o2 UM |y 1) = g |00) + boy [01)+byo | 10)4by [11)
2-bit gate
U
boo Upp U1 Uo2 Uopz][aoo
bo1| _ |U10 U11 Uiz Usz||apq
by Uzp U1 Uz Uzz|[%10
bi1 U3zp Uzp Uz Uzz|[%11

* Asingle two-qubit gate U operates on the phasor
a00|00> + a01|01>+a10|10)+a11|11> to output boolOO) + b01|01)+b10|10)+b11|11)

U(apo|00) + agq]|01)+aq9|10)+a1[11)) = bgo |00) + bgy|01)+by|10)+by4[11)

U isis a4x4 matrix.
o Itis a unitary transform

o Its columns are orthogonal and form a new basis set

* Examples coming up



The simplest 2-qubit gate

1q1) » X > |01)

1q2) > Y > |0;)

e Each qubit is independently operated on by a one-qubit
gate

o Note: This is still a two qubit system operating on two qubits
and producing two qubits

 What is the resulting 2-qubit gate?



2-qubit gate

1q1) > X

1q2) > Y

> |01)

> |07)

|q1) = ag|0) + a;|1)
|q2) = bo|0) + ¢1|1)

|01) = ¢0|0) + ¢1]1)
|02) = do|0) + dyq]1)

|u)

Vo1
V10

e How does U relateto X and Y

> |v)

lu) = |CI1> & 192) = 19192)
|v) = |01) & |0z} = |0107)

- _uOO_

Up1
U1p

1 [U11]




2-qubit gate

|q1) » X > |01)
1q2) » Y > |07)
Xo0 Xo1]
X =
X10 X11
Yoo Yo1
Y = U=XQY =
Yio Y11

e How does U relateto X and Y
when the qubits don’t interact

o l.e. no entanglement
o Verify that U is unitary

U =

X00Y00

X00Y10
X10Y00

| X10Y10

(Yoo
Y10
Yoo
Y10

» U > |v)

U=XQRY

Yo1] X (Yoo Yo1l]
V11| 1 {yi0 Y11]
Yo1 X Yoo JYo1

Y11 | 11 Yio Y11l
X00Yo1 Xo01Yoo Xo01Yo1]
Xo0Y11 Xo01Y10 Xo01Y11
X10Y01 X11Yo0 “X11Yo1
X10Y11  X11Y10 X11Y11.




2-qubit gate

191) " X > [01)
|92) > Z > [02)
|u) » U > V)
191) " X > [01)
|q2) > H > |02)
* Whatis U?

e What is the structure of the transform?

o Can you generalize to more than 2 non-interacting bits?



The CNOT gate

1q1) ® > |0q)
|q2> <> > |02)

lo102) = CNOT(|q192))
01 = (1 0, =q; D q;
*01 = ({1

o The first input is always unchanged

* 0, = (@, if g1 = |0) (is 0), otherwise 0, = X(q,)
o It bit-flips if the first input is 1

* (4 is the control bit and g, is the target bit



The CNOT gate

191) 4 > |01)
192) <> > [07)
10102) = CNOT(|4142)) s s
0102) = 419> Ugq | Ug1
| = [enoT] [
] U0 Ugg
1 0 0 O
0 1 0 O : . :
CNOT =, o o 1| Verify that this is unitary
0 0 1 0.

CNOT (agp|00) + ag1|01)+a,]10)+a,1|11)) = ago |00) + ag1|01)+a,1|10)+a4,]11)

* Are 01 and 0, entangled?



The CNOT gate

1q1) ® > |01)
|q2> <> >|02)
10102) = CNOT(14142)) o o
0102) = 419> Ugq | Ug1
Ui = [CNOT] Uy
] Uio Uq
1 0 0 O
10 1 0 O
CNOT = 0 0 0 1
0 0 1 O

CNOT (agp|00) + ag1|01)+a,]10)+a,1|11)) = ago |00) + ag1|01)+a,1|10)+a4,]11)
* Are 01 and 0, entangled?

CNOT IS AN ENTANGLING GATE!



Lets try some simple gates

* So we know how to construct simple 2-qubit
guantum gates

* So now, lets try to build them for the following 2-
input Boolean operations
o XPY
- X (AND)Y



|X)

V) =1X) @ [Y)

1Y)

W)

VW) = U|XY)

e We don’t care what W is

* Create U such that the
truth table to the right is
produced

- = O O

- O = O

© = = O



Xy V) = I{O DY)
v | 1 X
VW) = U[XY)
* U[00) = [0 *)

e How do we select W
to construct a U for this?

- = O O

A 4 vV VvV V

- O = O

© = = O
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1X) V) =1X)@|Y) Gog .
> > a01 q
W) A10 .

|Y> g | . a1 |

|VW) = U|XY)

« UJ[00) = |0 *) 0 0

e How do we select W 0 1

to construct a U for this? 1 0

. 1 1

Invertibility: Every orange row
must be unique (or the function is not invertible)

o Create W for this

Design a U for the chosen W

© = = O

= O O



V) =1X) @ [Y)

W)

m =, O O
R, O rr O
o r L, O
R, B, O O

VW) = U|XY)

. U|00) = [00), U|01) = |10), U|10) = |11),U|11) = |01)

1 Upp Up1 U2 Ups]|1 0 Upp Up1 Up2 Ups] |0
0] _ [%Y10 U11 U1z U13]|0 0] _ [%10 U111 U1z Ugs||1
0| [UY20 U21 Uzz U3||O 1| |U20 U1 Uz Up3| |0
0 Uzg Uzp Uz Uzz]|0 0 Uzg Uz1 Uz Uzz||0
0 Upp Up1 U2 Ups] ][0 0 Upp Up1 Up2 Ups] |0
0Ol _ |%10 U111 U12 U3 ||0 1] Y10 U11 U2 U130
0] [u20 U1 Uzz Upz|]1 0] |U20 U1 Uzz Up3|]|O
1 Uzg Uz1 Uz U3z |0 0 Uzg U3z Uz Uszzf|1l




V)= 1X)AY)

W)

VW) = U|XY)

e How do we select W
to be able to constructa U
for this table?

- = O O

A 4 vV VvV V

- O = O

r O O O



1X) V) =X)A|Y)  og g o bog
> > Ap1 e - b01

| .
) W) . ’ 7 o
| ol > a’ll > iy .._.._‘-.Hr-. 3 _‘L.-Iég bll

VW) = U|XY)

e How do we select W
to be able to constructa U
for this table?

) B, O O

R, O rr O

~ O O O
*

* You cannot!!!

o Which other gates are similarly impossible to model?



So how do you do an AND

VVYVVVVYYY

X T) >
|Y> > W> > E
1Z) ) VY= 1X)A[Y) <A
NE > ‘

|VW) = U|XY)

* You add an output qubit

o The fact is, the output is not
manufactured from thin air

o Its actually an entire qubit

P, P, P P O O O O
] ] o o - ] o o
R, O B O P O Fr O
*
*

* Does this help?



So how do you do an AND

) [rnee.ee U0

) gy L2

7y |\ ,;m:‘ V) =1X)ATY)
VW) = U|XY)

* You can’t in general

o If you want V to give you the

right input regardless of Z

= = - O O O O

VVVVVVVY

VVYVVVVYYY

- +» O O +» +» O O

- O - O = O +—» O

O O O O O O



So how do you do an AND

VVYVVVVYYY

X T >
1Y) . wy | E
1Z) | L=== V)= 1X)AlY) e
VW) = U|XY) X |Y |z
0 0 O
* You can’t in general 0 0 1
o If you want V to give you the o 1 0
right input regardless of Z Sl
* But it only has to work for one li g (1)
value of Z [1 1 o0
o This gives you a lot more freedom 1 1 1

to “design” your transform



So how do you do an AND

VVYVVVVYYY

X) T) | flesan
|Z) 1. V) = |)>( YAY) E : |
VW) = U|XY) X |Y |z
0 00 0 0 O]
* You can’t in general 0 01 0 0 1
o If you want V to give you the [o 1 0 0o 1 0]
right input regardless of Z 0 1 1 EEENE
|1 0 0 1 0o o]
* Butitonly hastoworkforone 5o 1 1 1 o
value of Z [1 1 0 1 0 1]
o This gives you a lot more freedom 1 1 1 1 1 1

to “design” your transform
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The CSWAP (or FREDKIN) Gate
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The CSWAP gate

X)
Y)
Z)

—1

* The controlled swap gate

o If the “contro

|”

* Verify that whenZ=0, V=XANDY

T)
w)
V)

Xis 0, Y and Z go through in the same order
o IfXis1, YandZswap

 What other Boolean functions can you get by varying Z?

o And at what output variable?

 What would the output be for superposed states?



Note: The CSWAP, combined

The CSWAP gate with a NOT is a universal gatell

Why??

X) > |T)
" >T< W)
Z) V)

>

* The controlled swap gate

|”

o If the “control” Xis 0, Y and Z go through in the same order
o IfXis1, YandZswap

* Verify that whenZ=0, V=XANDY

 What other Boolean functions can you get by varying Z?

o And at what output variable?

 What would the output be for superposed states?



Lesson for the day

* You cannot simply emulate N-bit classical gates
with an N-bit quantum circuit

* You will have to add extra qubits to hold the output
* And still more qubits to hold other necessary

variables
> AKA “junk”



Classical vs Quantum circuits
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e Classical circuits:
o N bits goin
o K bits come out

* Quantum circuits:
o Can often not directly emulate the classical circuit (with N input
qubits and K output qubits)
o For K < N, can definitely not emulate the classical circuit directly



Classical vs Quantum circuits
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e Classical circuits:
o N bits goin
o K bits come out

* Quantum circuits:
o Can often not directly emulate the classical circuit (with N input
qubits and K output qubits)
o For K < N, can definitely not emulate the classical circuit directly

o Can definitely also not emulate the classical circuit if K > N



Classical vs Quantum circuits
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e Classical circuits:
o N bits goin
o K bits come out

* Quantum circuits:
o Can often not directly emulate the classical circuit (with N input

qubits and K output qubits)
o For K < N, can definitely not emulate the classical circuit directly

o Can definitely also not emulate the classical circuit if K > N
o Even for K = N, often need additional inputs and outputs



Classical vs Quantum circuits

. - BE
hdi — g' _ —> g
S —  Classical o ?) |« 5 Quantum | | ¥
=z > n % 4>4> 4ﬁ g
z 7
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Classical circuits: « What principles do we use to design them?
o N bits goin > Is there a generic method?
o K bits come out o And what must we watch out for?

e Quantum circuits: <~

o Can often not directly emulate the classical circuit (with N input
qubits and K output qubits)

o For K < N, can definitely not emulate the classical circuit directly
o Can definitely also not emulate the classical circuit if K > N
o Even for K = N, often need additional inputs and outputs



Making a classical circuit

quantum

Input Qubits: |X) {4>

Additional Qubits: |00.. 0) {%

Quantum

4,} Output Qubits:C (| X))

;, } Junk Qubits: junk(|X))

* First, make it reversible

o Total number of input qubits = Total number of output qubits

e Output bits don’t just emerge from the ether, they were always there

o So, actual circuit has as input “X bits | Y bits”

o The output is actually “C(X) | junk(X)”
= The input bits too may get modified

o No. of qubits in junk(X) = no. of qubits in X

e But... Not so simple...



Making a classical circuit

quantum

Input : |X00..0) { X7 {—>

100..0) {:

Quantum

> Output :|C(X)junk(X))

* The output is not C(X) & junk(X)
o Itis actually |C(X)junk(X))

o l.e. for any given input X you will not be able to obtain
all possible combinations of C(X) and all 2N possible
values of junk(X) simply by manipulating the input
values of the output bits Y

= Why is this the case?



Making a classical circuit

quantum
Input : X =|111) N
|11100..0) {4’ Quantum > |C(111)junk(111))
— ey

* The outputis not C(X) & junk(X)
o Itis actually |C(X)junk(X))

* When you fix X, the values of junk(X) are restricted
o Only K bits available to manipulate N bits

* In other words, when you fix C(X), the values of junk(X)
are restricted
o The target output bits and the junk output bits are entangled!!!



Making a classical circuit

quantum
Input : X =|111) N
111100.. 0) {% o — L [C(111)junk(111))
— —
* The output is not C(X) ® junk(X) Why is this a
o Itis actually |C(X)junk(X)) problem?

* When you fix X, the values of junk(X) are restricted
o Only K bits available to manipulate N bits

* In other words, when you fix C(X), the values of junk(X)
are restricted
o The target output bits and the junk output bits are entangled!!!



The trouble with junk — an
example

U= [
1-Qubit 0
X classical | *Y =X |c) —{ quantum — |y) = |x)
equality gate

—[0) + —|1) — quantum ——|0) + —|1)
V2 V2 equality gate V2 V2

* Consider a 1-bit equality gate

o Classically y = x

e This can in fact be implemented using a 1-qubit quantum gate with U = [
o More generally, if x = ay|0) + a4|1), then the outputy = a,|0) + a;|1)

* We input the sign basis |x) = | +) = |O) + —= |1)

: 1 1
o Outputis |y) = % |0) + % |1)



The trouble with junk — an
example

X—

classical

'Y =X

V2

|x) —

1-Qubit
quantum
equality gate

1 o
U_[01

— |y) = |x)

1
|O>+ﬁ|1> —

1-Qubit

quantum — H [ 7

equality gate

Consider a 1-bit equality gate

o Classically y = x

This can in fact be implemented using a 1-qubit quantum gate with U = |

o More generally, if x = ay|0) + a4|1), then the outputy = a,|0) + a;|1)

: 1 1
o Outputis |y) = % |0) + % |1)

o Whatis the output?

o What will we get if we measure it?

We input the sign basis |x) = | +) = \/% |0) + \/% |1)

Now we put a Hadamard gate at the output



The trouble with junk — an
example

X—

classical

'Y =X

V2

|x) —

1-Qubit
quantum
equality gate

1 o
U_[01

— |y) = |x)

1
|O>+ﬁ|1> —

1-Qubit

quantum — o H —{ A

equality gate

Consider a 1-bit equality gate

o Classically y = x

M

This can in fact be implemented using a 1-qubit quantum gate with U = |

o More generally, if x = ay|0) + a4|1), then the outputy = a,|0) + a;|1)

: 1 1
o Outputis |y) = % |0) + % |1)

o Whatis the output?

o What will we get if we measure it?

We input the sign basis |x) = | +) = \/% |0) + \/% |1)

Now we put a Hadamard gate at the output



The reversible 2-qubit equality gate

X — classical | Y =X

i

0) 0 0 0
2-Qubit - 0 1 EEESE
) reversible v} = Ix) il 0 1 1
10) quantum w) 1 1 1 0
equality gate
1 0 0 O
10 1 0 O
U= 0 0 0 1
0 0 1 0.

* Now we convert it to a reversible gate using the earlier formula
o Add a second input and second output
o We construct the truth table above:

* The equality gate is obtained by setting the second input to 0
o For|y) =|0), the output |v) is |v) = |x)



The reversible 2-qubit equality gate
X classical [ Y =X m

0 0 0 0

2-Qubit ) 0 1 EEESE

%) reversible vy = |x 1 0 1 1

10) quantum w) 1 1 1 0
equality gate

n n N1

Note that this is not necessary for this gate;
this exercise is meant for illustrating the
problem with junk

(SR ==N

* Now we convert it to a reversible gate using the earlier formula
o Add a second input and second output

o We construct the truth table above:

* The equality gate is obtained by setting the second input to O
o For|y) =0), the output |v)is |v) = |x)



Looking closer

- 10) | 2-Qubit 0) 7
100) - reversible - 100) m
|0) | quantum 0) 0 0 0 0
lity gate "
L equality g 0 1 0 1
) 1 0 1 1
"1V 2-qubit |11 1 1 1 0
110) - reversible - [11)
|0) | quantum 1)
— . >
. equality gate -

* The equality gate is obtained by setting the second
iInputto O
* For |y) = |0), the output |v) is apparently |v) = |x)
* The actual complete output is,
for |xy) =100), =  |vw) = ]00)
for |xy) =110), = |vw)=]11)



Lets input a + basis

-1 1 2-Qubit
—|0) + —=|1) —> ibl —
|+0) - V2 V2 reversible _
0) quantum
L | equality gate -

* The input is:

1 1
1x0) = | + 0) =ﬁ|oo>+ﬁ|1o>

* The complete output is:



Lets input a + basis

! 1 2-Qubit
\/—§|0)+\/—§|1) reversible 1 100) + 1 111)
[+0) - 0) quantum \/7 \/7
. | equality gate -

* The input is:

1 1
1x0) = | + 0) =ﬁ|oo>+ﬁ|1o>

* The complete output is:

1 1
lvw) =\/—§|oo>+ﬁ|11>



Collapsing the equality of the
reversible 2-qubit equality gate

] ilo) +i|1) —_— 2-Qubit |17)> H > |0)
I+0) - V2 V2 reversible
10) — quantum lw) . )
. equality gate

* Now add a Hadamard to the first qubit

* Note that this is effectively the same situation as
we had with the one-qubit gate

e But is the output the same as for the 1-qubit gate?



The trouble with junk

-1 |0)+i|1> __| 2-Qubit 24 y o=,
| +0) - \/f V2 reversible M
10) — quantum lw) N
- equality gate

e The actual output before the Hadamard is

1 1
lvw) = —100) + —|11)

vz V2
* The output after the Hadamard is:
|ov>=717(?|0>+7|1> f‘ —|0>—?|1>> >

1
lov) = §(|00) +10) + [01) — |11))

* The outputis no longer deterministic. In fact the probability of measuring a 1 on the first bit is (what?)



The trouble with junk

1 1-Qubit
—[0) + —|1) ——{ quantum 3 H — A —s
V2 V2 equality gate -
—0) + —|1) — li)»H li)»/?ﬁ-»
V2 V2 reversible M
10) — quantum lw) N
equality gate

* Comparison:
o Using the 1-qubit gate the measured outputis |1)
o Using the 2-qubit gate, the probability of measuring |1) is 0.5

* Simply having the junk bit destroyed our equality gate!!



Lets input a + basis

-1 10) + 1 1) 2-Qubit 1 1
d V2 V2 reversible L —|00) + —11)
[ +0) 0) quantum V2 V2
. | equality gate -

* The output is:

1 1
lvw) =\/_§|OO>+E|“>

* |f you measure w and get a 0, what is v?

* |f you measure w and geta 1, what is v?



Lets input a + basis

%|0)+\%|1) f(;\cl);eurlz:éle 1 100) + 1 111)
[+0) - 0) quantum V2 V2
. | equality gate -

* The output is:

1 1
=—100) + —=|11
|UW) \/il )+ \/il ) What we measure

. on the junk bit
* If you measure w and get a 0, what is v?  affects what you

: measure on output
* |f you measure w and geta 1, what is v?



So why don’t we just

junk bits?

[ -

junk” our

Input Qubits: |X) {4>

Additional Qubits: |00.. 0) {%

Invertible C
(Quantum)
(Lets call it C)

4,} Output Qubits:C (| X))

;, } Junk Qubits: junk(|X))

* Account for them in our arithmetic and ignore

them...
* You can’t



Remember the time machine?

1X) {: - c(xy

100... 0) {::

mucho tiempo

junk(|X))

 Someone, somewhere, somewhen may measure the junk
bits
o Today or in the year 20,000,000AD
o This someone could simply be nature

 What they measure will influence your measurement today

o You cannot trust the output of your computation

o You cannot simply assume the junk will never be measured, and
you cannot assume what it will be measured as



So how do we deal with the
junk?

1X) {%% > cgx)

00..0) {—— b junk(X)

* The junk bits cannot just be discarded.

o So how do we handle them?

* Desideratum : They must be “disentangled” from
the actual output, somehow

e Hint: The circuitis invertible...



Eliminating the junk

¢(Xx))

0 {

100..0) {:

pw

:} 100..0)

9
\ A A 4 A\ A 4
a
I
=

junk(|X))

* If you connect the inverse of the circuit to the
circuit, you “disentangle” the junk bits
o Which will return to the value |00 ... 0)

* But now, we’ve lost the target output C(|X))



Retaining the output

10) P >
o) o C(1x))
S ® > -
R SO T == d
100.. 0) {% ; %} 100.. 0)
junk(|X))

* Have a second set of output qubits which are CNOTted with C(|X))
o The output qubits are initialized to |0)

- |0) CNOT C(X) = C(X)
* The output is captured

o Theinputis retained

o The Junk bits are disentangled



The full circuit

o 20
\VV C X
10) S (1X))
- @ > -
%) { c q(9) : -1 } %)
100..0) { : >
junk(|X))
* Input comprises e Qutput is
© |X> O C(|X>);
o output bits initialized to |0) o |X),
o and a bunch of auxiliary |0)s o and a bunch of |0)s,

needed for computation

* With junk disentangled

|X) remains entangled with C(]X)), as it must be



The full process: Step 1

e Step 1a: Using truth tables

o Compose a truth table for the function

= Will require new output bits

o Compose the transform for the table
= As a (minimal) tensor product of universal set of quantum gates
= Will generally require new junk bits

e Step lalternative: Compose the circuit using quantum
variants of Boolean gates
o Construct quantum circuit using the gates
o Will require output and junk bits



The output of step 1

1X) {%% e A )

100...0) {: ‘ b junk(X)

* A circuit that takes in input bits, output bits and junk bits

* And outputs the target output, plus a number of potentially
entangled junk bits



Caxy

VVY vy
a
I
=

Jjunk(|X))

e Couple the output of Step 1 with its own inverse



Step 3:

0) o
10) N C(1X))
= @ > =
%) { c c(xX) : -1 } %)
00..0) {1 :  } 100..0)
junk(|X})

* Add the actual output qubits, which are CNOTted
with the C(|X)) computed by the inner circuit



The full circuit

Q(C)
10) <
|O> \V/
1X) nd—
{ < (A ) N .
100.. 0) { > :
junk(]X))




What are the universal gquantum
set of gates?

* Universal quantum set of gates:
o CNOT
o X
o H
o/

T .
o g rotation

* Any function can be computed using just these
gates



A note on measurement...

0 with P = a3
4]0 +a|1) " N1with P = &

M

 What is this crazy thing called measurement?

* We have a qubit |x) = ay|0) +a4|1)

* We want to run some physical operation on it such that
the outcome is 0 with P = ag and 1 with P = a4

* What might such a process look like?



The CNOT with |0) creates a Bell
State

0) ® - 10)
0) <> - 10)

* The target input is |x) = ay|0) +a4|1)

* The output is |y) = a,|00) +a|11)



The CNOT with |0) creates a Bell
State

1) ® . 11)

|0)

> 1)

1N
1

* The target input is |x) = ay|0) +a4|1)

* The output is |y) = a,|00) +a|11)



The CNOT with |0) creates a Bell
State

ao|0) +a, 1) @ -
a,|00) +a,|11)

>

|0)

1N
N

* The target input is |x) = ay|0) +a4|1)

* The output is |y) = a,|00) +a|11)



Adding another CNOT

0)

0)

0)

@ > 10)
D
B—

* The target input is |y) = a,|00) +a,|11)

* The outputis |z) = ay|000) +a4|111)



Adding another CNOT

1)

0)

0)

@ - 11)
B
B—

* The target input is |y) = a,|00) +a,|11)

* The outputis |z) = ay|000) +a4|111)



Adding another CNOT
¢

ay|0) +a,|1)

0)

0)

* The target input is |y) = a,|00) +a,|11)

* The outputis |z) = ay|000) +a4|111)

1N
N

>

p
N

N
%

ay|000) +a,|111)



Adding another CNOT

a,|0) +a,|1) 00
10) <> R
o [\ aolf)OOO) +a,[1111)
L/
0) 1
L/

* The target input is |z) = a|000) +a,|111)

* The output is |[c) = ay|0000) +a,|1111)



Adding another CNOT

/Jt\ *—090

apl0) +a;[1)
0)
0)

0)

0)

>

L

>

p
\

N
/

> 4,]/00000) +a,|11111)

A
.

N
/

>

p
.

N
/

>

* The target input is [c) = a,|0000) +a,|1111)

* The output is |d) = ay|00000) +a4|11111)



With sufficient addition we get...
ay|0) +a;|1) ﬂ""‘,‘ﬂ.‘“‘"ﬂ
0)

L/
0) %,
0) g
0)
0)
0)
0)
0) D

¢V

Jd A\
V

Jd A\
WV

D
V

Jd A

N
L/

v v v v v v v v v

* The output is
lo) = ay|000000...0) +a4|111111 ... 1)



With sufficient addition we get...

ay|0) +a4

1)
0)
0)
0)
0)
0)
0)
0)
0)

——9999000000000

X/

4
\

A
L/

Jd A\
V

fd A\
WV

>
OwithP = a
1withP =a

Jd A\
WV

/4 A\
VV

Jd A\
WV

* The output is

* Nature does not like qguantum macroscopic objects

lo) = a,|000000 ...0) +a,[111111...1)

fd A\
WV

o It will collapse this to either [000000 ... 0) with probability a3 or [111111 ...1)

with probability a?

* This gives us a measurement of 0 with P = a3 and 1 with P = a?

2
0

2
1



Measurement

* Previous example from Umesh Vazirani

* |n general, measurement is more complex

o But consists of composing macro quantum objects that
will collapse

e More on this later

* Moving on...



