Quantum... Computing

Can Stock Photo - csp16101833

God,

Gates and Circuits

- Alice and Bob live in separate cities and may not communicate
- The casino sends each of them a random bit
 - $_{\circ}$ $\,$ Need not be identical
- They must inspect their bit and output a value
 - \circ Alice outputs a, Bob outputs b
- They get a prize of \$1.00 if:
 - Both got "1" from the casino and their outputs are such that $a \neq b$
 - $_{\circ}$ Any other condition ([0,1], [1,0], [0,0]) they must output a == b
- What is the best strategy, and what is their expected earning?

The CHSH game with a qubit

- Before moving to separate cities, Alice and Bob split a pair of entangled bits in the Bell State
- Now what is their best strategy?

- Alice uses two sets of bases for measurement: 0/1 and +/- (at 45°)
 - If Alice gets a 0 from the casino she measures using 0/1 and outputs the value
 - Else she measures using +/- and outputs the value
- Bob uses two sets of bases: at $\left[\frac{\pi}{8}, \frac{5\pi}{8}\right]$ and $\left[\frac{-\pi}{8}, \frac{3\pi}{8}\right]$
 - If Bob gets a 0 from the casino, he measures using $\left[\frac{\pi}{8}, \frac{5\pi}{8}\right]$ and outputs the value
 - Else he measures using the $\left[\frac{-\pi}{8}, \frac{3\pi}{8}\right]$ and outputs the value

The CHSH inequality

- The Clauser Horne Shimony Holt (1969):
- For classical computers

 $E[0,0] + E[0,1] + E[1,0] - E[1,1] \le 2$

- where E[x, y] is the probability that Alice and Bob "agree" (i.e. a = b) when they receive x and y respectively
 - Note: The maximum possible value under perfect knowledge is 3. The closer you are to 3, the more money you make
- Using quantum entanglement

 $E[0,0] + E[0,1] + E[1,0] - E[1,1] \le 2\sqrt{2}$

- $_{\circ}$ $\,$ Regardless of the actual qubit shared $\,$
- Over any policy / measurement strategy
- This is 2.8, which is very close to the max possible value of 3
- Qubits, which are useless for communication, can still be used to create *correlations* which can be exploited
 - They can "enhance" asymmetries in the system

Lesson – you cannot communicate

- But you can correlate
- And correlation can be used for profit...

The Determinism Conundrum

Schroedingers equation

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}, t) \right] \Psi(\mathbf{x}, t)$$

- The term in the square brackets is the Hamiltonian.
 - $_{\circ}\,$ It includes a *potential* term $V(\pmb{x},t)$ which can be manipulated to manipulate the Hamiltonian itself
- ∇^2 is the Laplacian
- *x* is 3D position
- $\Psi(\mathbf{x}, t)$ is the wave function for a particle

Is there a Higher Knower?

- $\Psi(\mathbf{x}, t)$, when measured, collapses into one of the many possible states
- Was this state fore-ordained?
- Einsten, Podelsky and Rosen (EPR) yes!
 - Local realism: The fate of one qubit cannot affect another faster than light
 - Ergo: The "entangled" qubits were *foreordained* to their state by some (possibly ancient) latent variable. There is no "entanglement" per-se...

Is there a Higher Knower?

- $\Psi(\mathbf{x}, t)$, when measured, collapses into one of the many possible states
- Was this state fore-ordained?
- The CHSH game uses entangled qubits to prove otherwise
 - Einstein, Podolsky, Rosen: The two cubits were independently foreordained by a common cause to fall the same way
 - Bell: If so, their individual measurements (and their bases) should not have any influence on the other if they are randomly chosen
 - P(match) <= 0.75
 - P = 0.85 implies actual entanglement, and genuine randomness in measurement

What does the higher-knower know?

- The *probability distribution in* $\Psi(\mathbf{x}, t)$ may be known for all x at some t.
- But

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}, t) \right] \Psi(\mathbf{x}, t)$$

- This is solveable.
- If $\Psi(\mathbf{x}, t)$ is known at any time it is known for all time!!!
 - $_{\circ}~$ The wavefunction is fully determined for all time
 - $_{\circ}~$ The universe is deterministic in probability

Quantum gates

$$|\psi\rangle = \begin{bmatrix} a_0 \\ \vdots \\ a_N \end{bmatrix} \qquad |\varphi\rangle = \begin{bmatrix} b_0 \\ \vdots \\ b_N \end{bmatrix}$$

$$\begin{bmatrix} b_0 \\ \vdots \\ b_N \end{bmatrix} = U \begin{bmatrix} a_0 \\ \vdots \\ a_N \end{bmatrix}$$

- Operate on *N*-Dimensional phasors
 - \circ In a complex *N*-D complex Hilbert space
 - $_{\circ}$ The input is an N-D phasor, the output too is an N-D phasor
- The "gate" is itself a transform
 - A unitary transform
- So how many inputs does the gate have, and how many outputs?

- Two-bit classical gates take in 2 bits, and output one or two bits
 - $_{\circ}$ $\,$ They operate on a two-dimensional input space
- What dimensionality of space do two-qubit quantum gates operate on

TWO QUBIT GATES

$$|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle \rightarrow Quantum 2-bit gate \Rightarrow |\varphi\rangle = b_{00}|00\rangle + b_{01}|01\rangle + b_{10}|10\rangle + b_{11}|11\rangle$$

$$qubit \rightarrow Quantum qubit 2-bit gate \Rightarrow qubit$$

- Two-bit classical gates take in 2 bits, and output one or two bits
 - $_{\circ}$ $\,$ They operate on a two-dimensional input space
- What dimensionality of space do two-qubit quantum gates operate on
 - $_{\circ}$ $\,$ Four dimensional inputs and outputs
 - But physically still represented by two qubits (thanks quantum!)

• A single two-qubit gate U operates on the phasor

 $a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle$ to output $b_{00}|00\rangle + b_{01}|01\rangle + b_{10}|10\rangle + b_{11}|11\rangle$

 $U(a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle) = b_{00}|00\rangle + b_{01}|01\rangle + b_{10}|10\rangle + b_{11}|11\rangle$

- U is is a 4x4 matrix.
 - It is a unitary transform
 - $_{\circ}$ $\,$ Its columns are orthogonal and form a new basis set
- Examples coming up

The simplest 2-qubit gate

- Each qubit is independently operated on by a one-qubit gate
 - Note: This is still a two qubit system operating on two qubits and producing two qubits
- What is the resulting 2-qubit gate?

2-qubit gate

• How does U relate to X and Y

2-qubit gate

 How does U relate to X and Y when the qubits don't interact

 I.e. no entanglement
 Verify that U is unitary

	$x_{00}y_{00}$	$x_{00}y_{01}$	$x_{01}y_{00}$	$x_{01}y_{01}$
II —	$x_{00}y_{10}$	$x_{00}y_{11}$	$x_{01}y_{10}$	$x_{01}y_{11}$
0 —	$x_{10}y_{00}$	$x_{10}y_{01}$	$x_{11}y_{00}$	$x_{11}y_{01}$
	$x_{10}y_{10}$	$x_{10}y_{11}$	$x_{11}y_{10}$	$x_{11}y_{11}$

2-qubit gate

- What is *U*?
- What is the structure of the transform?

 $_{\circ}\,$ Can you generalize to more than 2 non-interacting bits?

The CNOT gate

 $o_1 = q_1 \qquad o_2 = q_1 \oplus q_2$

• $o_1 = q_1$

 $_{\circ}~$ The first input is always unchanged

• $o_2 = q_2$ if $q_1 = |0\rangle$ (is 0), otherwise $o_2 = X(q_2)$

 $_{\circ}~$ It bit-flips if the first input is 1 $\,$

• q_1 is the *control* bit and q_2 is the *target* bit

The CNOT gate

 $CNOT(a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle) = a_{00}|00\rangle + a_{01}|01\rangle + a_{11}|10\rangle + a_{10}|11\rangle$

• Are o_1 and o_2 entangled?

The CNOT gate

 $CNOT(a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle) = a_{00}|00\rangle + a_{01}|01\rangle + a_{11}|10\rangle + a_{10}|11\rangle$

• Are o_1 and o_2 entangled?

CNOT IS AN ENTANGLING GATE!!

Lets try some simple gates

- So we know how to construct simple 2-qubit quantum gates
- So now, lets try to build them for the following 2input Boolean operations
 - $\circ X \bigoplus Y$
 - X (AND) Y

- We don't care what W is
- Create *U* such that the truth table to the right is produced

X	Y	V	W
0	0	0	
0	1	1	
1	0	1	
1	1	0	

- $U|00\rangle = |0*\rangle$
- How do we select *W* to construct a *U* for this?

X	Υ	V	W
0	0	0	
0	1	1	
1	0	1	
1	1	0	

- $U|00\rangle = |0*\rangle$
- How do we select *W* to construct a *U* for this?
- Invertibility: Every orange row
 1
 1
 1
 must be unique (or the function is not invertible)
 - \circ Create *W* for this
- Design a U for the chosen W

X	Υ	V	W
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

X	Υ	V	W
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

• $U|00\rangle = |00\rangle, U|01\rangle = |10\rangle, U|10\rangle = |11\rangle, U|11\rangle = |01\rangle$

$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix} = \begin{bmatrix} 1\\0\\0\end{bmatrix}$	$u_{10} \\ u_{10} \\ u_{20} \\ u_{30}$	$u_{01} \\ u_{11} \\ u_{21} \\ u_{31}$	$u_{02} \\ u_{12} \\ u_{22} \\ u_{23}$	$ \begin{bmatrix} u_{03} \\ u_{13} \\ u_{23} \\ u_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 0\\0\\1\\0\end{bmatrix} =$	$\begin{bmatrix} u_{00} \\ u_{10} \\ u_{20} \\ u_{30} \end{bmatrix}$	$u_{01} \\ u_{11} \\ u_{21} \\ u_{31}$	$u_{02} \\ u_{12} \\ u_{22} \\ u_{23}$	$\begin{bmatrix} u_{03} \\ u_{13} \\ u_{23} \\ u_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$
$\begin{bmatrix} 0\\0\\0\\1\end{bmatrix} = \begin{bmatrix} 1\\1\end{bmatrix}$	$\begin{bmatrix} u_{00} \\ u_{10} \\ u_{20} \\ u_{30} \end{bmatrix}$	$u_{01} \ u_{11} \ u_{21} \ u_{31}$	$u_{02} \\ u_{12} \\ u_{22} \\ u_{23}$	$ \begin{bmatrix} u_{03} \\ u_{13} \\ u_{23} \\ u_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 0\\1\\0\\0\end{bmatrix} =$	$\begin{bmatrix} u_{00} \\ u_{10} \\ u_{20} \\ u_{30} \end{bmatrix}$	$u_{01} \\ u_{11} \\ u_{21} \\ u_{31}$	$u_{02} \ u_{12} \ u_{22} \ u_{23}$	$ \begin{bmatrix} u_{03} \\ u_{13} \\ u_{23} \\ u_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} $

How do we select W
 to be able to construct a U
 for this table?

X	Υ	V	W
0	0	0	*
0	1	0	*
1	0	0	*
1	1	1	*

 How do we select W to be able to construct a U for this table?

X	Y	V	W
0	0	0	*
0	1	0	*
1	0	0	*
1	1	1	*

- You cannot!!!
 - $_{\circ}$ Which other gates are similarly impossible to model?

- You add an *output qubit*
 - The fact is, the output is not manufactured from thin air
 - $_{\circ}~$ Its actually an entire qubit
- Does this help?

X	Y	Ζ	Т	W	V
0	0	0	*	*	*
0	0	1	*	*	*
0	1	0	*	*	*
0	1	1	*	*	*
1	0	0	*	*	*
1	0	1	*	*	*
1	1	0	*	*	*
1	1	1	*	*	*

nnn

- You can't in general
 - If you want V to give you the right input regardless of Z

- You can't in general

 You can't in general
 If you want V to give you the right input regardless of Z
 If you want V to give you the 1

 If you want V to give you the 1
- But it only has to work for *one* value of Z
 - This gives you a lot more freedom to "design" your transform

- If you want V to give you the right input regardless of Z
- But it only has to work for *one* value of Z
 - This gives you a lot more freedom to "design" your transform

The CSWAP (or FREDKIN) Gate

$$U = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

X	Y	Ζ	Т	W	V
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	1

The CSWAP gate

- The controlled swap gate
 - If the "control" X is 0, Y and Z go through in the same order
 - $_{\circ}~$ If X is 1, Y and Z swap
- Verify that when Z = 0, V = X AND Y
- What other Boolean functions can you get by varying Z?
 And at what output variable?
- What would the output be for *superposed* states?

The CSWAP gate

Note: The CSWAP, combined with a NOT is a universal gate!!

Why??

- The controlled swap gate
 - If the "control" X is 0, Y and Z go through in the same order
 - $_{\circ}~$ If X is 1, Y and Z swap
- Verify that when Z = 0, V = X AND Y
- What other Boolean functions can you get by varying Z?
 And at what output variable?
- What would the output be for *superposed* states?
Lesson for the day

- You cannot simply emulate N-bit classical gates with an N-bit quantum circuit
- You will have to add extra qubits to hold the output
- And still more qubits to hold other necessary variables
 - AKA "junk"

- Classical circuits:
 - $_{\circ}~N$ bits go in
 - $\circ K$ bits come out
- Quantum circuits:
 - Can often not directly emulate the classical circuit (with *N* input qubits and *K* output qubits)
 - \circ For K < N, can *definitely* not emulate the classical circuit directly

- Classical circuits:
 - $_{\circ}~N$ bits go in
 - $\circ K$ bits come out
- Quantum circuits:
 - \circ Can often not directly emulate the classical circuit (with N input qubits and K output qubits)
 - $_{\circ}$ For K < N, can *definitely* not emulate the classical circuit directly
 - \circ Can definitely also not emulate the classical circuit if K > N!

- Classical circuits:
 - $_{\circ}~N$ bits go in
 - $\circ K$ bits come out
- Quantum circuits:
 - Can often not directly emulate the classical circuit (with *N* input qubits and *K* output qubits)
 - \circ For K < N, can *definitely* not emulate the classical circuit directly
 - \circ Can definitely also not emulate the classical circuit if K > N!
 - Even for K = N, often need additional inputs and outputs

- Classical circuits:
 - \circ *N* bits go in
 - $\circ K$ bits come out
- Quantum circuits: 4

- What principles do we use to design them?
 - Is there a *generic* method?
 - $_{\circ}\;$ And what must we watch out for?
- \circ Can often not directly emulate the classical circuit (with N input qubits and K output qubits)
- $_{\circ}$ For K < N, can *definitely* not emulate the classical circuit directly
- \circ Can definitely also not emulate the classical circuit if K > N!
- Even for K = N, often need additional inputs and outputs

- First, make it reversible
 - Total number of input qubits = Total number of output qubits
- Output bits don't just emerge from the ether, they were always there
 - So, actual circuit has as input "X bits | Y bits"
 - The output is actually " $C(X) \mid junk(X)$ "
 - The input bits too may get modified
 - No. of qubits in junk(X) = no. of qubits in X
- But... Not so simple...

• The output is not $C(X) \otimes junk(X)$

 \circ It is actually $|C(X)junk(X)\rangle$

- I.e. for any given input X you will not be able to obtain all possible combinations of C(X) and all 2^N possible values of junk(X) simply by manipulating the input values of the output bits Y
 - Why is this the case?

- The output is not $C(X) \otimes junk(X)$
 - It is actually $|C(X)junk(X)\rangle$
- When you fix X, the values of junk(X) are restricted
 - \circ Only *K* bits available to manipulate *N* bits
- In other words, when you fix *C*(*X*), the values of *junk*(*X*) are restricted
 - The target output bits and the junk output bits are *entangled*???

• The output is not $C(X) \otimes junk(X)$

• It is actually $|C(X)junk(X)\rangle$

Why is this a problem?

- When you fix X, the values of junk(X) are restricted
 - \circ Only *K* bits available to manipulate *N* bits
- In other words, when you fix *C*(*X*), the values of *junk*(*X*) are restricted
 - The target output bits and the junk output bits are *entangled*!!!

The trouble with junk – an example $X \rightarrow \text{classical} \rightarrow Y = X$ $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $|x\rangle \rightarrow \begin{array}{c} 1-\text{Qubit} \\ \text{quantum} \\ \text{equality gate} \end{array} \quad |y\rangle = |x\rangle$ $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \rightarrow \begin{array}{c} 1-\text{Qubit} \\ \text{quantum} \\ \text{equality gate} \end{array} \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

- This can in fact be implemented using a 1-qubit quantum gate with U = I
 - More generally, if $x = a_0 |0\rangle + a_1 |1\rangle$, then the output $y = a_0 |0\rangle + a_1 |1\rangle$
- We input the sign basis $|x\rangle = |+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

• Output is
$$|y\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

Consider a 1-bit equality gate

 \circ Classically y = x

The trouble with junk – an example $X \rightarrow \text{classical} \rightarrow Y = X$ $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $|x\rangle \rightarrow \text{quantum}$ equality gate $|y\rangle = |x\rangle$ $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \rightarrow \frac{1-\text{Qubit}}{\text{quantum}}$ equality gate

- Consider a 1-bit equality gate
 - \circ Classically y = x
- This can in fact be implemented using a 1-qubit quantum gate with U = I
 - More generally, if $x = a_0 |0\rangle + a_1 |1\rangle$, then the output $y = a_0 |0\rangle + a_1 |1\rangle$
- We input the sign basis $|x\rangle = |+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

• Output is
$$|y\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

- Now we put a Hadamard gate at the output
 - $_{\circ}$ $\,$ What is the output?
 - What will we get if we measure it?

The trouble with junk – an example $X \rightarrow \text{classical} \rightarrow Y = X$ $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $|x\rangle \rightarrow \text{quantum}_{\text{equality gate}} \rightarrow |y\rangle = |x\rangle$ $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \rightarrow \frac{1-\text{Qubit}}{\text{quantum}_{\text{equality gate}}} \rightarrow H \rightarrow \frac{1}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}}|1\rangle$

- Consider a 1-bit equality gate
 - \circ Classically y = x
- This can in fact be implemented using a 1-qubit quantum gate with U = I
 - More generally, if $x = a_0 |0\rangle + a_1 |1\rangle$, then the output $y = a_0 |0\rangle + a_1 |1\rangle$
- We input the sign basis $|x\rangle = |+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

• Output is
$$|y\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

- Now we put a Hadamard gate at the output
 - $_{\circ}$ $\,$ What is the output?
 - What will we get if we measure it?

The reversible 2-qubit equality gate

- Now we convert it to a reversible gate using the earlier formula
 - $_{\circ}~$ Add a second input and second output
 - $_{\circ}~$ We construct the truth table above:
- The equality gate is obtained by setting the second input to 0

• For $|y\rangle = |0\rangle$, the output $|v\rangle$ is $|v\rangle = |x\rangle$

The reversible 2-qubit equality gate

- Now we convert it to a reversible gate using the earlier formula
 - $_{\circ}~$ Add a second input and second output
 - We construct the truth table above:
- The equality gate is obtained by setting the second input to 0
 - $_{\circ}$ For $|y\rangle = |0\rangle$, the output $|v\rangle$ is $|v\rangle = |x\rangle$

X	Y	V	W
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

- The equality gate is obtained by setting the second input to 0
- For $|y\rangle = |0\rangle$, the output $|v\rangle$ is apparently $|v\rangle = |x\rangle$
- The *actual* complete output is,

for
$$|xy\rangle = |00\rangle$$
, \Rightarrow $|vw\rangle = |00\rangle$
for $|xy\rangle = |10\rangle$, \Rightarrow $|vw\rangle = |11\rangle$

Lets input a + basis

• The input is:

$$|x0\rangle = |+0\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

• The complete output is:

Lets input a + basis

• The input is:

$$|x0\rangle = |+0\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

• The complete output is:

$$|vw\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

Collapsing the equality of the reversible 2-qubit equality gate

$$|+0\rangle \left\{\begin{array}{c} \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \longrightarrow \begin{array}{c} 2-\text{Qubit} \\ \text{reversible} \\ \text{quantum} \\ \text{equality gate} \end{array} \right| \begin{array}{c} |v\rangle \\ H \longrightarrow |o\rangle \\ |w\rangle \end{array}$$

- Now add a Hadamard to the first qubit
- Note that this is effectively the same situation as we had with the one-qubit gate
- But is the output the same as for the 1-qubit gate?

The trouble with junk

• The actual output before the Hadamard is

$$|vw\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

• The output after the Hadamard is:

$$|ov\rangle = \frac{1}{\sqrt{2}} \left| \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) 0 \right| + \frac{1}{\sqrt{2}} \left| \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right) 1 \right|$$
$$|ov\rangle = \frac{1}{2} (|00\rangle + |10\rangle + |01\rangle - |11\rangle)$$

• The output is no longer deterministic. In fact the probability of measuring a 1 on the first bit is (what?)

The trouble with junk

- Comparison:
 - $_{\circ}~$ Using the 1-qubit gate the measured output is |1
 angle
 - $_{\circ}~$ Using the 2-qubit gate, the probability of measuring |1
 angle is 0.5
- Simply having the junk bit destroyed our equality gate!!

Lets input a + basis

• The output is:

$$|vw\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

- If you measure w and get a 0, what is v?
- If you measure w and get a 1, what is v?

Lets input a + basis

• The output is:

$$|vw\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

- If you measure w and get a 0, what is v?
- If you measure w and get a 1, what is v?

What we measure on the junk bit affects what you measure on output

So why don't we just "junk" our junk bits?

- Account for them in our arithmetic and ignore them...
- You can't

Remember the time machine?

- Someone, somewhere, somewhen may measure the junk bits
 - Today or in the year 20,000,000AD
 - This someone could simply be nature
- What they measure will influence your measurement today
 - $_{\circ}~$ You cannot trust the output of your computation
 - You cannot simply assume the junk will never be measured, and you cannot assume what it will be measured as

So how do we deal with the junk?

The junk bits cannot just be discarded.

 $_{\circ}~$ So how do we handle them?

- Desideratum : They must be "disentangled" from the actual output, somehow
- Hint: The circuit is invertible...

Eliminating the junk

• If you connect the inverse of the circuit to the circuit, you "disentangle" the junk bits

 $_{\circ}$ Which will return to the value $|00 \dots 0\rangle$

• But now, we've lost the target output $C(|X\rangle)$

Retaining the output

- Have a second set of output qubits which are CNOTted with $C(|X\rangle)$
 - $_{\circ}$ The output qubits are initialized to $|0\rangle$
 - $\circ |0\rangle \operatorname{CNOT} C(X) = C(X)$
- The output is captured
 - $_{\circ}~$ The input is retained
 - The Junk bits are disentangled

The full circuit

- Input comprises
 - $\circ |X\rangle$
 - $_{\circ}~$ output bits initialized to $\left|0\right\rangle$
 - and a bunch of auxiliary |0>s
 needed for computation

- Output is
 - $\circ C(|X\rangle),$
 - $\circ |X\rangle$,
 - $_{\circ}$ and a bunch of $|0\rangle$ s,
- With junk disentangled

 $|X\rangle$ remains entangled with $C(|X\rangle)$, as it must be

The full process: Step 1

- Step 1a: Using truth tables
 - $_{\circ}~$ Compose a truth table for the function
 - Will require new output bits
 - $_{\circ}~$ Compose the transform for the table
 - As a (minimal) tensor product of universal set of quantum gates
 - Will generally require new junk bits
- Step 1alternative: Compose the circuit using quantum variants of Boolean gates
 - Construct quantum circuit using the gates
 - Will require output and junk bits

The output of step 1

- A circuit that takes in input bits, output bits and junk bits
- And outputs the target output, plus a number of potentially entangled junk bits

• Couple the output of Step 1 with its own inverse

 Add the actual output qubits, which are CNOTted with the C(|X) computed by the inner circuit

The full circuit

What are the universal quantum set of gates?

- Universal quantum set of gates:
 - CNOT
 - X
 - ο H
 - Z
 - $\circ \frac{\pi}{8}$ rotation
- Any function can be computed using just these gates

A note on measurement...

- What is this crazy thing called measurement?
- We have a qubit $|x\rangle = a_0|0\rangle + a_1|1\rangle$
- We want to run some physical operation on it such that the outcome is 0 with P = a_0^2 and 1 with P = a_1^2
- What might such a process look like?

The CNOT with $|0\rangle$ **creates a Bell State**

- The target input is $|x\rangle = a_0|0\rangle + a_1|1\rangle$
- The output is $|y\rangle = a_0|00\rangle + a_1|11\rangle$
The CNOT with $|0\rangle$ **creates a Bell State**

- The target input is $|x\rangle = a_0|0\rangle + a_1|1\rangle$
- The output is $|y\rangle = a_0|00\rangle + a_1|11\rangle$

The CNOT with $|0\rangle$ **creates a Bell State**

- The target input is $|x\rangle = a_0|0\rangle + a_1|1\rangle$
- The output is $|y\rangle = a_0|00\rangle + a_1|11\rangle$

Adding another CNOT

- The target input is $|y\rangle = a_0|00\rangle + a_1|11\rangle$
- The output is $|z\rangle = a_0|000\rangle + a_1|111\rangle$

Adding another CNOT

- The target input is $|y\rangle = a_0|00\rangle + a_1|11\rangle$
- The output is $|z\rangle = a_0|000\rangle + a_1|111\rangle$

- The target input is $|y\rangle = a_0|00\rangle + a_1|11\rangle$
- The output is $|z\rangle = a_0|000\rangle + a_1|111\rangle$

- The target input is $|z\rangle = a_0|000\rangle + a_1|111\rangle$
- The output is $|c\rangle = a_0|0000\rangle + a_1|1111\rangle$

Adding another CNOT

- The target input is $|c\rangle = a_0|0000\rangle + a_1|111\rangle$
- The output is $|d\rangle = a_0|00000\rangle + a_1|1111\rangle$

With sufficient addition we get...

• The output is

 $|o\rangle = a_0 |000000 \dots 0\rangle + a_1 |111111 \dots 1\rangle$

With sufficient addition we get...

• The output is

 $|o\rangle = a_0 |000000 \dots 0\rangle + a_1 |111111 \dots 1\rangle$

- Nature does not like quantum macroscopic objects
 - $_{\circ}~$ It will collapse this to either $|000000\ldots0\rangle$ with probability a_{0}^{2} or $|111111\ldots1\rangle$ with probability a_{1}^{2}
- This gives us a measurement of 0 with P = a_0^2 and 1 with P = a_1^2

Measurement

- Previous example from Umesh Vazirani
- In general, measurement is more complex
 - But consists of composing macro quantum objects that will collapse
- More on this later
- Moving on...