
Quantum…
Computing

Lecture 4: Or how I got stuck in a time machine
And made some money



Classical computation

• A box that performs a computation
o Takes in a collection of bits, outputs one or more bits

• The box is composed of gates
o Binary gates: 2 inputs, one output

o Large fan-in gates: many inputs one output

• Objective in design
o Ensure the output is always right

o Minimize the number of gates

o Other objectives
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Note: You can do it all using 
only NAND gates

(but may need an exponential 
number of them)

NAND is a universal gate



Quantum computation

• A box that performs a computation

• The box too is composed of computations that are 
analogous to the Boolean operations and gatesof
classical computation

|𝜓⟩ |𝜑⟩



Poll 1

• An N-bit Boolean function is built as a quantum circuit.  How many 
inputs and outputs does the quantum circuit have.

o N qubit input , N qubit output
o 2N qubit input, 2N qubit output
o N qubit input, 2N qubit output
o 2N qubit input, 1 qubit output

• An N-bit Boolean function is built as a quantum circuit.  What is the 
dimensionality of the input and output of the circuit.

o N dimensional input , N dimensional output
o 2N dimensional input, 2N dimensional output
o N dimensional input, 2N dimensional output
o 2N dimensional input, 1 dimensional output
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The secret life of a quantum 
computer

• The complete cycle
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The secret life of a quantum 
computer

• The complete cycle

• The actual quantum computation
o The computer may itself include measurement as in 

internal operation
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The secret life of a quantum 
computer

N qubit 
input
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N qubit 
output

2N x  2N unitary transform



What is a Unitary Transform

• A Unitary transform is a rotation
o It is invertible and maintains the length of the input

|0⟩

|1⟩

|𝜑⟩ = 𝑈|𝜓⟩

|𝜓⟩

𝑈 = 𝑢ଵ 𝑢ଶ … 𝑢௅
𝑈



Properties of a Unitary Transform

• If two vectors |𝑎⟩ and |𝑏⟩ are rotated by the same amount, the angle 
between them remains unchanged

o Unitary transforms retain angles

𝑈𝑎 𝑈𝑏 = 𝑎 𝑏

⇒  𝑈𝑎 ு 𝑈𝑏 = 𝑎ு𝑈ு𝑈𝑏 = 𝑎ு𝑏

⇒ 𝑈ு𝑈 = 𝐼

• The Hermitian of 𝑈 is its own inverse
o The columns of 𝑈 are orthogonal to one another (why)?

|0⟩

|1⟩

𝑈

𝑈

𝜃

𝜃

The angle between the red
and blue phasors remains
unchanged after each of them
has been rotated by 𝑈



Poll 2

• Mark all that are true of a unitary transform matrix
o Its columns are unit-length vectors

o There is no length restriction on the length of the vectors that form 
the columns of the unitary matrix

o The columns of the matrix must all be orthogonal to one another

o There is no restriction on the angles between the columns

o The columns of the matrix form an orthogonal basis set

o The columns of the matrix are linearly independent, but not 
necessarily a complete basis set

o A unitary matrix transforms one of the bases into one of the 
columns of the matrix
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Properties of a Unitary Transform

• What happens when we transform a basis | ∗⟩?
o What is the length of 𝑢௜?

• Each of the original bases gets mapped onto one of the columns of U
o The columns of 𝑈 form a new bases

• What happens when we transform a superposed phasor?

• Transforming a superposed phasor results in a superposition of the 
columns of the matrix!

𝑢ଵ 𝑢ଶ … 𝑢௅

1
0
⋮
0

= 𝑢ଵ

𝑢ଵ 𝑢ଶ … 𝑢௅

0
1
⋮
0

= 𝑢ଶ

𝑢ଵ 𝑢ଶ … 𝑢௅

𝑎
𝑏
0
0

=?

𝑈|0⟩ = |𝑢ଵ⟩

𝑈|1⟩ = |𝑢ଶ⟩

𝑈(𝑎|0⟩ + 𝑏|1⟩) =?

𝑢௜ =?



How to check if a transformation 
U is a valid “gate”

• How to check if 𝑈 is a valid “gate” (quantum 
operator)

• 𝑈 must be Unitary:
o Verify that 𝑈ு𝑈 = 𝐼

o Every gate must satisfy this criterion

|𝜓⟩ |𝜑⟩

|𝜑⟩ = 𝑈|𝜓⟩



Revisiting single qubit gates

• Classical gate:  One bit goes in, one bit comes out

• Quantum gate: one qubit encoding a 2D complex phasor 
goes in, one qubit comes out

o Note, even though its only physically one qubit, logically it 
represents a 2D phasor
 This is the magic of quantum computers employing quantum phenomena

Classical
1-bit gate

bit bit |𝜓⟩ = 𝑎଴|0⟩ + 𝑎ଵ|1⟩ Quantum
1-bit gate 𝑈

|𝜑⟩ = 𝑏଴|0⟩ + 𝑏ଵ|1⟩

𝑈 =
𝑢଴଴ 𝑢଴ଵ

𝑢ଵ଴ 𝑢ଵଵ

𝑏଴

𝑏ଵ
=

𝑢଴଴ 𝑢଴ଵ

𝑢ଵ଴ 𝑢ଵଵ

𝑎଴

𝑎ଵ



One Qubit gate

• 2D phasor |𝜓⟩ goes in, 2D phasor |𝜑⟩ comes out
|𝜑⟩ = 𝑈|𝜓⟩

• 𝑈 is a unitary transform

𝑈 =
𝑢଴଴ 𝑢଴ଵ

𝑢!଴ 𝑢ଵଵ

𝑏଴

𝑏ଵ
=

𝑢଴଴ 𝑢଴ଵ

𝑢!଴ 𝑢ଵଵ

𝑎଴

𝑎ଵ

|0⟩

|1⟩

|𝜓⟩
|0⟩

|1⟩

|𝜑⟩ = 𝑈|𝜓⟩
|𝜓⟩ = 𝑎଴|0⟩ + 𝑎ଵ|1⟩

𝑈
|𝜑⟩ = 𝑏଴|0⟩ + 𝑏ଵ|1⟩



Single qubit gates: The bit-flip 
gate X

• First verify that 𝑋 is unitary (or its not really a gate)

• Swaps the |0> and |1> bit values
o Note – it swaps bit values in 2D
o Can be viewed as flipping |0> and |1> in the phasor

𝑋 =
0 1
1 0

|0⟩ 𝑋
𝑎|0⟩ + 𝑏|1⟩

|1⟩ |1⟩ 𝑋 |0⟩ 𝑋
𝑏|0⟩ + 𝑎|1⟩

0
1

=
0 1
1 0

1
0

1
0

=
0 1
1 0

0
1

𝑏
𝑎

=
0 1
1 0

𝑎
𝑏

|0⟩

|1⟩

𝑋

|0⟩

|1⟩

𝑋

|0⟩

|1⟩

𝑋
(a,b)

(b,a)



The phase flip gate Z

• The phase flip gate simply flips the sign of the |1> component

• First, verify that it’s a Unitary transform

• The phase flip gate doesn’t really change the probability of 
measuring |0> or |1>, so what is it doing?

𝑍 =
1 0
0 −1

|0⟩ 𝑍
𝑎|0⟩ + 𝑏|1⟩

|0⟩ |1⟩ 𝑍 −|1⟩ 𝑍
𝑎|0⟩ − 𝑏|1⟩

1
0

=
1 0
0 −1

1
0

0
−1

=
1 0
0 −1

0
1

𝑎
−𝑏

=
1 0
0 −1

𝑎
𝑏

|0⟩

|1⟩

𝑍

|0⟩

|1⟩

𝑍

(a,b)

(a,-b)



The phase flip gate Z

• The Phase flip gate is in fact the sign flip gate

𝑍
1

2
|0⟩ +

1

2
|1⟩ =

1

2
|0⟩ −

1

2
|1⟩ ⇒ 𝑍| +⟩ = | −⟩

 

𝑍
1

2
|0⟩ −

1

2
|1⟩ =

1

2
|0⟩ +

1

2
|1⟩ ⇒ 𝑍| −⟩ = | +⟩

1

2
|0⟩ +

1

2
|1⟩ 𝑍

1

2
|0⟩ −

1

2
|1⟩

1

2
|0⟩ −

1

2
|1⟩ 𝑍

1

2
|0⟩ +

1

2
|1⟩

𝑍| +⟩ | −⟩ 𝑍| −⟩ | +⟩

1

2

−
1

2

=
1 0
0 −1

1

2
1

2

1

2
1

2

=
1 0
0 −1

1

2

−
1

2
|0⟩

|1⟩

𝑍

| +⟩

| −⟩



The Hadamard gate H

• First verify that it’s a Unitary transform

• The Hadamard gate converts bit bases to sign bases and vice versa

𝐻|0⟩ =
1

2
|0⟩ +

1

2
|1⟩ ⇒ 𝐻|0⟩ = | +⟩      𝐻|1⟩ =

1

2
|0⟩ −

1

2
|1⟩ ⇒ 𝐻|1⟩ = | −⟩

𝐻
1

2
|0⟩ +

1

2
|1⟩ = |0⟩ ⇒ 𝐻| +⟩ = |0⟩     𝐻

1

2
|0⟩ −

1

2
|1⟩ = |1⟩ ⇒ 𝐻| −⟩ = |1⟩

𝐻 =

1

2

1

2
1

2
−

1

2

𝐻|0⟩ | +⟩

𝐻| +⟩ |0⟩

𝐻|1⟩ | −⟩

𝐻| −⟩ |1⟩

Write this 
down in 
algebra



A digression: How do we 
measure with different bases?
• We will specifically consider the sign bases vs the bit 

bases?
o The distinction between the two is that they are at 45 

degrees to one another

• Keep in mind that there is no “absolute” basis
o There’s no “absolute bit basis” and no “absolute sign basis”

o The bit and sign bases only differ from each other through 
their relation to one another
 45 degrees
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Bit bases and Sign basis

Bit bases Sign bases

Bit bases Sign bases
The bit bases can be oriented anyhow The sign bases are at +-45o to the bit bases



Measuring with bit bases vs. 
measuring with sign bases

• Measuring with bit basis (above) vs.
• Measuring with sign basis (below)

H



Returning to our topic: Unitary 
transforms are rotations
• So what kind of rotations are 

o The bit flip gate?
o The phase flip gate?
o The Hadamard gate?



Unitary transforms are rotations

• Note that all of these gates are special – since their entries are all 
real, and they’re symmetric, they are their own inverse

• Applying them twice in a row reverts to the original!!

|0⟩

|1⟩

𝑋

|0⟩

|1⟩

𝑍

−|1⟩

|0⟩

|1⟩

𝐻

| +⟩

| −⟩



The three 1-qubit gates: H X and Z

• 𝑋|0⟩ = |1⟩

• 𝑍| −⟩ = | +⟩

• 𝐻𝑍𝐻𝑋|𝑎⟩ = |𝑎⟩

• 𝐻|1⟩ = | −⟩

• 𝐻| +⟩ = |0⟩

• 𝐻𝑍𝐻 = 𝑋

|1⟩|0⟩

| −⟩| +⟩

𝑋

𝑍

𝐻 𝐻



Single qubit gates: The phase 
and bit-flip gate Y

• First verify that 𝑌 is unitary (or its not really a gate)

• Swaps the |0> and |1> bit values
o But also flips them from the real to the imaginary axis
o Also flips the +/- bases (to where?)

𝑌 =
0 −𝑖
𝑖 0

|0⟩ 𝑌
𝑎|0⟩ + 𝑏|1⟩

𝑖|1⟩ |1⟩ 𝑌 −𝑖|0⟩ 𝑌
𝑖𝑏|0⟩ − 𝑖𝑎|1⟩

0
𝑖

=
0 −𝑖
𝑖 0

1
0

−𝑖
0

=
0 −𝑖
𝑖 0

0
1

−𝑖𝑏
𝑖𝑎

=
0 −𝑖
𝑖 0

𝑎
𝑏

Can’t really visualize



Moving on…

• Not much you can do with only one bit
• Let’s add another bit..



You can’t get very far with one 
bit

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|0> + 𝛼ଵ|1>
|𝜓ଵ⟩ = 𝛽଴|0> + 𝛽ଵ|1>

• How many states does the combined system have
o How many coordinates in the new system



Representing the combined 
system

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|0> + 𝛼ଵ|1>
|𝜓ଵ⟩ = 𝛽଴|0> + 𝛽ଵ|1>

• The combined system:
|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>
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Representing the combined 
system

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|+> + 𝛼ଵ|−>
|𝜓ଵ⟩ = 𝛽଴|0> + 𝛽ଵ|1>
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Representing the combined 
system

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|+> + 𝛼ଵ|−>
|𝜓ଵ⟩ = 𝛽଴|+> + 𝛽ଵ|−>

• The combined system:
|𝜓⟩ = 𝛾଴଴|++> + 𝛾଴ଵ|+−>+ 𝛾ଵ଴|−+>+ 𝛾ଵଵ|−−>

What is |𝜓⟩ assuming
non-interacting qubits



In vector representation

• Two qubits walk into a bar…

|𝜓଴⟩ =
𝛼଴

𝛼ଵ
             |𝜓ଵ⟩ =

𝛽଴

𝛽ଵ

• The combined system vector is? (Assuming non-
interacting qubits)

o What is this strange mathematical operation?

Assuming bit bases all around



The Kronecker product of two 
vectors

𝛼଴

𝛼ଵ
⊗

𝛽଴

𝛽ଵ
=

𝛼଴
𝛽଴

𝛽ଵ

𝛼ଵ
𝛽଴

𝛽ଵ

=

𝛼଴𝛽଴

𝛼଴𝛽ଵ

𝛼ଵ𝛽଴

𝛼ଵ𝛽ଵ

• In Ket notation
𝛼଴|0> + 𝛼ଵ|1> ⊗ 𝛽଴|0> + 𝛽ଵ|1>

= 𝛼଴𝛽଴|00> + 𝛼଴𝛽ଵ|01> + 𝛼ଵ𝛽଴|10> + 𝛼ଵ𝛽ଵ|11>



Measuring the two-cubit system

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• Measuring the combined system:
o We can measure both cubits simultaneously



Measuring the two-cubit system

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• Measuring the combined system:
o We can measure both cubits simultaneously

o Or just one



Simultaneous measurement

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|0> + 𝛼ଵ|1>
|𝜓ଵ⟩ = 𝛽଴|0> + 𝛽ଵ|1>

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• What will measurement give us and with  what probability

Assuming
non-interacting qubits



Individual measurement

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|0> + 𝛼ଵ|1>
|𝜓ଵ⟩ = 𝛽଴|0> + 𝛽ଵ|1>

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• What will measurement give us?
o You’re measuring bit 0
o What are the outcomes likely to be, and with what probability?

Assuming
non-interacting qubits



Individual measurement

• Two qubits walk into a bar…
|𝜓଴⟩ = 𝛼଴|0> + 𝛼ଵ|1>
|𝜓ଵ⟩ = 𝛽଴|0> + 𝛽ଵ|1>

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• You measured bit 0 and got a 0.
o Then you measure bit 1.  What is the probability of getting a 0?

• You measured bit 1 and got a 1
o Then you measure bit 1.  What is the probability of getting 0?

Assuming
non-interacting qubits
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• You measured bit 0 and got a 1
o Then you measure bit 1.  What is the probability of getting 0?
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Individual measurement

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• What will the outcomes of the measurement of bit 
0 be, and with what probability?
o What is the probability of getting 0?
o What is the probability of getting 1?



Individual measurement

|𝜓⟩ = 𝛾଴଴|00> + 𝛾଴ଵ|01>+ 𝛾ଵ଴|10>+ 𝛾ଵଵ|11>

• You measured bit 0 and got a 0.
o Then you measure bit 1.  What is the probability of getting a 

0?

• You measured bit 0 and got a 1
o Then you measure bit 1.  What is the probability of getting 0?



Lets plug in some numbers

|𝜓⟩ =
1

10
|00> +

2

10
|01>+

3

10
|10>+

2

10
|11>

• You measured bit 0 and got a 0.
o Then you measure bit 1.  What is the probability of getting a 0?

• You measured bit 0 and got a 1
o Then you measure bit 1.  What is the probability of getting 0?



Lets plug in some numbers

|𝜓⟩ =
1

10
|00> +

2

10
|01>+

3

10
|10>+

2

10
|11>

• What happened??
o The value measured for bit 0 influenced the value measured for bit 

1!!!
 The measurement probabilities for bit 1 changed if the measured value of 

bit 0 changed!

o The bits are entangled!!!



Lets plug in some numbers

|𝜓⟩ =
1

10
|00> +

2

10
|01>+

3

10
|10>+

2

10
|11>

• We measure b0 first.  What is the probability of 1?

• b0 turned up 1, now we measure b1.
o What is the probability of 1?



Lets plug in some numbers

|𝜓⟩ =
1

10
|00> +

2

10
|01>+

3

10
|10>+

2

10
|11>

• Future you measures b0. What is the probability of 1?

• Future you found b0 = 1.  Present you measures b1 now. 
o What is the probability of 1?



Lets plug in some numbers

|𝜓⟩ =
1

10
|00> +

2

10
|01>+

3

10
|10>+

2

10
|11>

• We measure b1 first.  What is the probability of 1?

• b1 turned up 1, now we measure b0.
o What is the probability of 1?

The order of measurement doesn’t matter.

The only fact that matters is that the bits are entangled



Lets plug in some numbers

|𝜓⟩ =
1

10
|00> +

2

10
|01>+

3

10
|10>+

2

10
|11>

• We measure b1 first.  What is the probability of 1?

• b1 turned up 1, now we measure b0.
o What is the probability of 1?

The order of measurement doesn’t matter.

The only fact that matters is that the bits are entangled

The system is a time machine!!!!!!!!!!!!!!!!!!!!!!!!!!!



A special entangled state

|𝜓⟩ =
1

2
|00> +

1

2
|11>

• The “Bell” state
o Named after John Bell
o Either both bits are 1, or both are 0

• Other Bell States

|𝜓⟩ =
1

2
|01> +

1

2
|10>

|𝜓⟩ =
1

2
|00> −

1

2
|11>

|𝜓⟩ =
1

2
|01> −

1

2
|10>



A special entangled state

|𝜓⟩ =
1

2
|00> +

1

2
|11>

• What is the Bell state, expressed in terms of |++>, 
|+−>, |−+>, |−−>



The BELL state

• |𝜓⟩ =
ଵ

ଶ
|00> +

ଵ

ଶ
|11>

• Regardless of what bases Alice uses to measure her 
qubit,  whatever she measures her qubit as – Bob’s 
qubit will collapse to that same phasor!!!



The BELL state

• |𝜓⟩ =
ଵ

ଶ
|00> +

ଵ

ଶ
|11>

• Alice uses • Alice measures • Bob’s qubit



The magic of the entangled gate

• The Hydrogen molecule..
o The two electrons will be in opposing spins

 Pauli’s exclusion principle
 Two fermions will never be in the same state

• If you separate the two atoms, the electrons will 
remain in opposing spins, regardless of how far 
apart they’re taken



Random facts (from my friend 
Ramdas Menon)
“Everyone knows the great Austrian theoretical physicist 
Wolfgang Pauli, who won the Nobel Prize in Physics in 
1945 (at the age of 45) for the eponymous Exclusion 
principle.

What very few people know is that there was a German 
physicist by name Wolfgang Paul who ALSO won the 
Nobel Prize in Physics in 1989 at the tender age of 76.

What still fewer people know is that the latter used to 
refer to the former as his "imaginary part"; nope, I ain't
explaining this one.”



Spooky action at a distance…

• Separate the entangled atoms by the width of the universe and they stay 
entangled: 

|𝜓⟩ =
1

2
|01> +

1

2
|10>

• Measure one and the other changes instantly!
o Spooky action at a distance!



God does not play dice!

• Einstein refused to believe in spooky action at a distance!

• So did Schrödinger

• But yeah…
o The fact that the observer can choose their bases for measurement 

means that the entangled particles could not have pre-decided how 
they would come out
 They would have to know a priori what bases they were going to be measured 

by, which they don’t



Spooky action at a distance…

• Separate the atoms by the universe and they stay entangled: 

|𝜓⟩ =
1

2
|01> +

1

2
|10>

• Measure one and the other changes instantly!
o Spooky action at a distance!

So does this mean we have found a way to communicate 
information instantaneously??

Faster than light!!!!!!!!!!!!



Spooky action at a distance…

• Separate the atoms by the universe and they stay entangled: 

|𝜓⟩ =
1

2
|01> +

1

2
|10>

• Measure one and the other changes instantly!
o Spooky action at a distance!

So does this mean we have found a way to communicate 
information instantaneously??

Faster than light!!!!!!!!!!!!

If you think so,  suggest how!

Can you suggest a communication protocol that uses 
entanglement to communicate faster than light?



Poll 3

• Alice and Bob share a pair of entangled qubits in the 
Bell State. They live on opposite sides of the universe. 
Alice flips a coin and it turns up heads. Can she 
communicate this information to Bob

o No,  faster-than-light communication of information is 
impossible

o No, not with today’s technology, but perhaps in the future we 
will invent a mechanism to do so using the entangled qubits

o Yes;  Alice can measure her qubit and the state of her qubit 
will be the same as Bob’s.  She can use this to communicate 
the information



Poll 3

• Alice and Bob share a pair of entangled qubits in the 
Bell State. They live on opposite sides of the universe. 
Alice flips a coin and it turns up heads. Can she 
communicate this information to Bob

o No,  faster-than-light communication of information is 
impossible

o No, not with today’s technology, but perhaps in the future we 
will invent a mechanism to do so using the entangled qubits

o Yes;  Alice can measure her qubit and the state of her qubit 
will be the same as Bob’s.  She can use this to communicate 
the information



Information cannot travel faster 
than light:  No signaling theorem

• Bob may be able to  know exactly what Alice measured, 
Alice still cannot control what she measures

o Its random

• So, there’s no way of letting Bob know “I have a 1”
o But can we still use this somehow to communicate information?

 Only it won’t be faster than light, but still…



Recap: The no cloning theorem
• You cannot clone a qubit

o Given an unknown qubit, you cannot simply make 2 
independent copies of it

• A) qubits aren’t just manufactured from thin air.  
So, to clone a qubit, you need the following system

• Quantum systems are always invertible
o Prove that you can’t clone a qubit

Magic Quantum 
Cloner

|𝜑⟩

|𝜓⟩ |𝜓⟩

|𝜓⟩

Qubit to be cloned

Support Qubit

Qubit

Qubit



Consequence: No deleting theorem
• Given two identical qubits you cannot delete one of 

them
o Deletion  destroying the information in one of them

• A system that does this:

• This cannot exist
o Prove it

Magic Qubit 
Destroyer

|𝜓⟩

|𝜓⟩ |𝜓⟩Qubit

Qubit

Qubit

|𝜓⟩ Junk Qubit



The no communication theorem

• Entangled qubits may collapse to the same state when measured, 
but this cannot be used to actively communicate a bit

o The “No Communication Theorem” : You cannot use entanglement to 
instantly signal new information beyond the state of the qubit itself

• There is no protocol that enables Alice to communicate any 
information to Bob



The no communication theorem

• Needs / implies the no-cloning theorem
o Cheat protocol:  To communicate her bit, Alice measures 

her entangled qubit if she has a 1,  and doesn’t measure 
it if she has a 0

o Bob clones his qubit 1million times and measures them.  
o If all are same, Alice got a 1 else she got a 0



But Alice and Bob can use 
entangled bits to coordinate!

• Entanglement cannot be used for communication, but can be used for 
coordination

o E.g. Alice and Bob have the same maze
o They can decide:  if we see a 0, go straight/right,  else turn/go left

o They can guarantee synchronized paths, but the final destination is random

• They have created non-local correlations
o Without being able to predict the expected outcome
o Can we use this somehow?



The CHSH game

• Alice and Bob live in separate cities and may not communicate

• The casino sends each of them a random bit
o Need not be identical

• They must inspect their bit and output a value
o Alice outputs 𝑎,  Bob outputs 𝑏

• They get a prize of $1.00 if:
o Both got “1” from the casino and their outputs are such that 𝑎 ≠ 𝑏

o Any other condition ([0,1], [1,0], [0,0]) they must output 𝑎 == 𝑏

• What is the best strategy, and what is their expected earning?

𝑥 𝑦

𝑎 𝑏
𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏

Win prize if



The CHSH game with a qubit

• Before moving to separate cities, Alice and Bob split 
a pair of entangled bits in the Bell State

• Now what is their best strategy?

𝑥 𝑦

𝑎 𝑏
𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏

Win prize if

|𝜓⟩ =
1

2
|00⟩ +

1

2
|11⟩



The CHSH game with a qubit

• Alice uses two sets of bases for measurement:  0/1 and +/- (at 45o)
o If Alice gets a 0 from the casino she measures using 0/1 and outputs the value
o Else she measures using +/- and outputs the value

• Bob uses two sets of bases:  at గ

଼
,

ହగ

଼
and ିగ

଼
,

ଷగ

଼

o If Bob gets a 0 from the casino, he measures using గ

଼
,

ହగ

଼
and outputs the value

o Else he measures using the ିగ

଼
,

ଷగ

଼
and outputs the value

0 1 0 1



Poll 4

• Alice and Bob both get 0 from the casino.  By their 
protocol,  Alice uses bit bases to measure her qubit, 
while bob uses the గ

଼
,

ହగ

଼
bases.  Alice measures 

her qubit with bit bases and measures it as a 0. 
What is Bob’s qubit at this point?
o The state |0>, since it is entangled with Alice.
o The phasor at pi/8, since Bob maps 0 to pi/8 and his 

qubit is entangled with Alice
o We can’t really say because they are using different 

bases



Poll 4

• Alice and Bob both get 0 from the casino.  By their 
protocol,  Alice uses bit bases to measure her qubit, 
while bob uses the గ

଼
,

ହగ

଼
bases.  Alice measures 

her qubit with bit bases and measures it as a 0. 
What is Bob’s qubit at this point?
o The state|0>, since it is entangled with Alice.
o The phasor at pi/8, since Bob maps 0 to pi/8 and his 

qubit is entangled with Alice
o We can’t really say because they are using different 

bases



Case 1: Alice and Bob both get 0 from 
the casino

• If Alice measures first using the 0/1 bases and gets a 0
o Bob’s qubit is also 0 due to entanglement
o Bob must also output a 0 to get money by the rules

• Bob measures using the గ

଼
,

ହగ

଼
bases

o He gets a 0 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒|𝑎 = 0, 𝑥 = 0, 𝑦 = 0), i. e probability that Bob’s 
output agrees with Alice, when 𝑥 = 0, 𝑦 = 0 and Alice outputs 𝑎 = 0

𝑥 = 0 𝑦 = 0

𝑎 = 0 𝑏 = 0

𝜋/8



Case 1: Alice and Bob both get 0 
from the casino

• If Alice measures first using the 0/1 bases and gets a 1
o Bob’s qubit is also 1 due to entanglement
o Bob must also output a 1 to get money by the rules

• Bob measures using the గ

଼
,

ହగ

଼
bases

o He gets a 1 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒|𝑎 = 1, 𝑥 = 0, 𝑦 = 0), i. e probability that Bob’s 
output agrees with Alice, when 𝑥 = 0, 𝑦 = 0 and Alice outputs 𝑎 = 1

𝑥 = 0
𝑦 = 0

𝑎 = 1 𝑏 = 1
𝜋

8



Case 1: Alice and Bob both get 0 
from the casino

• Probability of agreement when 𝑥 = 0, 𝑦 = 0
𝐸 𝑥 = 0, 𝑦 = 0 =

𝑃 𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒 𝑎 = 0, 𝑥 = 0, 𝑦 = 0 𝑃 𝑎 = 0|𝑥 = 0, 𝑦 = 0

+ 𝑃 𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒 𝑎 = 1, 𝑥 = 0, 𝑦 = 0 𝑃 𝑎 = 1|𝑥 = 0, 𝑦 = 0

= 𝑃 𝑎 = 0|𝑥 = 0, 𝑦 = 0 𝑐𝑜𝑠ଶ
𝜋

8
+ 𝑃 𝑎 = 1|𝑥 = 0, 𝑦 = 0 𝑐𝑜𝑠ଶ

𝜋

8

i.e.

𝐸 𝑥 = 0, 𝑦 = 0 = 𝑐𝑜𝑠ଶ
𝜋

8

• Expected income when  𝑥 = 0, 𝑦 = 0 is  $1 × 𝐸 𝑥 = 0, 𝑦 = 0 = 𝑐𝑜𝑠ଶ గ

଼

𝑥 = 0
𝑦 = 0

This represents P(Alice=Bob|x=0,y=0)



Case 2: Alice gets 0 and Bob gets 1 
from the casino

• If Alice measures first using the 0/1 bases and gets a 0
o Bob’s qubit is also 0 due to entanglement
o Bob must also output a 0 to get money by the rules

• Bob measures using the ିగ

଼
,

ଷగ

଼
bases

o He gets a 0 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒|𝑎 = 0, 𝑥 = 0, 𝑦 = 1), i. e probability that Bob’s 
output agrees with Alice, when 𝑥 = 0, 𝑦 = 1 and Alice outputs 𝑎 = 0

𝑥 = 0 𝑦 = 1

𝑎 = 0

𝑏 = 0



Case 2: Alice gets 0 and Bob gets 1 
from the casino

• If Alice measures first using the 0/1 bases and gets a 1
o Bob’s qubit is also 1 due to entanglement
o Bob must also output a 1 to get money by the rules

• Bob measures using the ିగ

଼
,

ଷగ

଼
bases

o He gets a 0 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒|𝑎 = 1, 𝑥 = 0, 𝑦 = 1), i. e probability that Bob’s 
output agrees with Alice, when 𝑥 = 0, 𝑦 = 1 and Alice outputs 𝑎 = 1

𝑥 = 0 𝑦 = 1
𝑎 = 1 𝑏 = 1



Case 2: Alice gets 0 and Bob gets 1 
from the casino

• Probability of agreement when 𝑥 = 0, 𝑦 = 1
𝐸 𝑥 = 0, 𝑦 = 1 =

𝑃 𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒 𝑎 = 0, 𝑥 = 0, 𝑦 = 1 𝑃 𝑎 = 0|𝑥 = 0, 𝑦 = 1

+ 𝑃 𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒 𝑎 = 1, 𝑥 = 0, 𝑦 = 1 𝑃 𝑎 = 1|𝑥 = 0, 𝑦 = 1

= 𝑃 𝑎 = 0|𝑥 = 0, 𝑦 = 1 𝑐𝑜𝑠ଶ
𝜋

8
+ 𝑃 𝑎 = 1|𝑥 = 0, 𝑦 = 1 𝑐𝑜𝑠ଶ

𝜋

8

i.e.

𝐸 𝑥 = 0, 𝑦 = 1 = 𝑐𝑜𝑠ଶ
𝜋

8

• Expected income when  𝑥 = 0, 𝑦 = 1 is  $1 × 𝐸 𝑥 = 0, 𝑦 = 1 = 𝑐𝑜𝑠ଶ గ

଼

𝑥 = 0
𝑦 = 0

This represents P(Alice=Bob|x=0,y=1)



Case 3: Alice gets 1 and Bob gets 0 
from the casino

• If Alice measures first using the 0/1 bases and gets a 0
o Bob’s qubit is also 0 due to entanglement
o Bob must also output a 0 to get money by the rules

• Bob measures using the గ

଼
,

ହగ

଼
bases

o He gets a 0 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒|𝑎 = 0, 𝑥 = 1, 𝑦 = 0), i. e probability that Bob’s 
output agrees with Alice, when 𝑥 = 1, 𝑦 = 0 and Alice outputs 𝑎 = 1

𝑥 = 1 𝑦 = 0

𝑎 = 0
𝑏 = 0



Case 3: Alice gets 1 and Bob gets 0 
from the casino

• If Alice measures first using the 0/1 bases and gets a 1
o Bob’s qubit is also 1 due to entanglement
o Bob must also output a 1 to get money by the rules

• Bob measures using the గ

଼
,

ହగ

଼
bases

o He gets a 1 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒|𝑎 = 1, 𝑥 = 1, 𝑦 = 0), i. e probability that Bob’s 
output agrees with Alice, when 𝑥 = 1, 𝑦 = 0 and Alice outputs 𝑎 = 1

𝑥 = 1
𝑦 = 0

𝑎 = 1

𝑏 = 1



Case 3: Alice gets 1 and Bob gets 0 
from the casino

• Probability of agreement when 𝑥 = 1, 𝑦 = 0
𝐸 𝑥 = 1, 𝑦 = 0 =

𝑃 𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒 𝑎 = 0, 𝑥 = 1, 𝑦 = 0 𝑃 𝑎 = 0|𝑥 = 1, 𝑦 = 0

+ 𝑃 𝑏𝑜𝑏 = 𝑎𝑙𝑖𝑐𝑒 𝑎 = 1, 𝑥 = 1, 𝑦 = 0 𝑃 𝑎 = 1|𝑥 = 1, 𝑦 = 0

= 𝑃 𝑎 = 0|𝑥 = 1, 𝑦 = 0 𝑐𝑜𝑠ଶ
𝜋

8
+ 𝑃 𝑎 = 1|𝑥 = 1, 𝑦 = 0 𝑐𝑜𝑠ଶ

𝜋

8

i.e.

𝐸 𝑥 = 1, 𝑦 = 0 = 𝑐𝑜𝑠ଶ
𝜋

8

• Expected income when  𝑥 = 1, 𝑦 = 0 is  $1 × 𝐸 𝑥 = 1, 𝑦 = 0 = 𝑐𝑜𝑠ଶ గ

଼

𝑥 = 0
𝑦 = 0

This represents P(Alice=Bob|x=1,y=0)



Case 4: Alice and Bob both get 1 
from the casino

• If Alice measures first using the 0/1 bases and gets a 0
o Bob’s qubit is also 0 due to entanglement
o Bob must now output a 1 to get money by the rules

• Bob measures using the ିగ

଼
,

ଷగ

଼
bases

o He gets a 1 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 ≠ 𝑎𝑙𝑖𝑐𝑒|𝑎 = 0, 𝑥 = 1, 𝑦 = 1), i. e probability that Bob’s 
output disagrees with Alice, when 𝑥 = 1, 𝑦 = 1 and Alice outputs 𝑎 = 1

𝑥 = 1 𝑦 = 1

𝑎 = 0

𝑏 = 1



Case 4: Alice and Bob both get 1 
from the casino

• If Alice measures first using the 0/1 bases and gets a 1
o Bob’s qubit is also 1 due to entanglement
o Bob must now output a 0 to get money by the rules

• Bob measures using the ିగ

଼
,

ଷగ

଼
bases

o He gets a 0 with probability 𝑐𝑜𝑠ଶ గ

଼

o This is 𝑃(𝑏𝑜𝑏 ≠ 𝑎𝑙𝑖𝑐𝑒|𝑎 = 1, 𝑥 = 1, 𝑦 = 1), i. e probability that Bob’s 
output disagrees with Alice, when 𝑥 = 1, 𝑦 = 1 and Alice outputs 𝑎 = 1

𝑥 = 1 𝑦 = 1
𝑎 = 1

𝑏 = 0



Case 4: Alice and Bob both get 1 
from the casino

• Probability of disagreement when 𝑥 = 1, 𝑦 = 0
𝐷 𝑥 = 1, 𝑦 = 0 =

𝑃 𝑏𝑜𝑏 ≠ 𝑎𝑙𝑖𝑐𝑒 𝑎 = 0, 𝑥 = 1, 𝑦 = 1 𝑃 𝑎 = 0|𝑥 = 1, 𝑦 = 1

+ 𝑃 𝑏𝑜𝑏 ≠ 𝑎𝑙𝑖𝑐𝑒 𝑎 = 1, 𝑥 = 1, 𝑦 = 1 𝑃 𝑎 = 1|𝑥 = 1, 𝑦 = 1

= 𝑃 𝑎 = 0|𝑥 = 1, 𝑦 = 1 𝑐𝑜𝑠ଶ
𝜋

8
+ 𝑃 𝑎 = 1|𝑥 = 1, 𝑦 = 1 𝑐𝑜𝑠ଶ

𝜋

8

i.e.

𝐷 𝑥 = 1, 𝑦 = 1 = 𝑐𝑜𝑠ଶ
𝜋

8

• Expected income when  𝑥 = 1, 𝑦 = 1 is  $1 × 𝐷 𝑥 = 1, 𝑦 = 1 = 𝑐𝑜𝑠ଶ గ

଼

𝑥 = 0
𝑦 = 0

This represents P(Alice!=Bob|x=1,y=1)



The CHSH game with a qubit

• The overall expected gain using the strategy is

𝐺 = ෍ 𝑃 𝑥, 𝑦 𝐺 𝑥, 𝑦 = ෍ 𝑃 𝑥, 𝑦 𝑐𝑜𝑠ଶ
𝜋

8
= 𝑐𝑜𝑠ଶ

𝜋

8
௫,௬௫,௬

• This is 0.85, which is greater than the best-case strategy 
with classical bits (0.75)

0 1 0 1



The CHSH game with a qubit

• Using entangled Qubits they got bigger returns
o Without really exchanging information!

• They created non-local correlations, which they 
exploited

𝑥 𝑦

𝑎 𝑏
𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏

Win prize if

|𝜓⟩ =
1

2
|00⟩ +

1

2
|11⟩



The CHSH inequality
• The Clauser Horne Shimony Holt (1969):

• For classical computers
𝐸 0,0 + 𝐸 0,1 + 𝐸 1,0 − 𝐸 1,1 ≤ 2

o where 𝐸 𝑥, 𝑦 is the probability that Alice and Bob “agree” (i.e. 𝑎 = 𝑏) when they receive 
𝑥 and 𝑦 respectively

 Note:  The maximum possible value under perfect knowledge is 3.  The closer you are to 3, the 
more money you make

• Using quantum entanglement
𝐸 0,0 + 𝐸 0,1 + 𝐸 1,0 − 𝐸 1,1 ≤ 2 2

o Regardless of the actual qubit shared

o Over any policy / measurement strategy
o This is 2.8, which is very close to the max possible value of 3

• Qubits, which are useless for communication, can still be used to create 
correlations which can be exploited

o They can “enhance” asymmetries in the system



Difference between 
communication and correlation

• Communication : Alice and Bob send each other 
information over the quantum channel

• Correlation : Alice and Bob act locally upon entangled bits
o They really have no way of knowing if the other is doing anything 

really

o Nothing is being communicated



Lesson – you cannot 
communicate
• But you can correlate

• And correlation can be used for profit…


