
Quantum…
computing



Recap: A model for computation

• A bunch of bits go in,  and one bit 
comes out.

• Examples to the right
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Recap: Classical math

• Algorithms are just functions that operate on bit patterns and produce an 
output

• Classical approach:  For an N-bit input, the function operates on an N-bit input 
space

o Each valid bit pattern is a vector in this space

• To fully characterize a unknown glass-box algorithms we must evaluate it on all 
2N feasible inputs

o Very expensive
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Recap: A new binary math

• Bit patterns now represent orthogonal directions

• An input is now a vector (a phasor) in this new space
o And represents a linear combination of bit patterns
o 1 bit:   
o 2 bits: 

• Superposition of all possible bit patterns

|00>

|01>

|10>

|11>

Lame attempt at visualizing 4D



Recap: The new “quantum” math

• An algorithm is now an operator that operates on the vector to produce another vector
o Can now compute the output for all bit patterns in a single evaluation step

• Caveats – the operator must be:
o Linear 

o Invertible

o And not increase the length of the vector (i.e. it must be a rotation)

• Additional clause:  The “Qbit” phasors must be unit length

|0>

|1>

y=0

y=1

ଵ ଶ

1-bit

ଵ ଶ



Quantum systems

• Cannot use classical physics
o Will require computers with exponential amounts of 

memory to represent even a small number of bits

• Quantum systems naturally exist in a 
superposition of multiple values

o If we assign each value to a bit value (or bit pattern), 
we get a quantum computing platform



Recap: Implementing the qubit

• Use quantum physics
o Derived from Schrodinger’s equation: ௗ

ௗ௧

 Every particle is a wave that exists in all states simultaneously
 ଶ = probability of finding the system in configuration at time when 

you measure it

o Use quantum properties of quantum particles to implement the bit
o E.g:  The energy level of an electron
o E.g: The spin of an electron
o E.g: The polarization of a photon



The 1-qubit quantum system

• The one-qubit system utilizes a single quantum entity to 
represent a bit in the new math

o As input and output

• I.e. the input is a single qubit, and the output too is a single qubit

• The input is actually a 2-dimensional vector, and so is the output
o It is just that a single “qubit” can fully encode this 2-dimensional vector

 Thank you Shroedinger

f(x)



Multiple bits

• Increasing the number of bits 
only takes increasing the 
number of basic quantum units |00>

|01>

|10>

|11>

2-bits

a|00> + b|01> + c|10> + d|11>



The multi-qubit quantum system

• N qubits go in and N qubits come out

• The input is actually a 2N-dimensional vector, and so is the 
output

o It is just that a single “qubit” can fully encode this 2-dimensional 
vector

o N qubits can encode a 2N dimensional space
 Thank you Shroedinger

f(x)



Poll 1

• Which of the following are instances of representation in the new 
math

o 000

o ଴ ଵ ଶ ଷ

o 00 + 01

o ଴ ଵ ଶ ଷ ସ ହ ଺ ଻

• Which of the following are potential practical platforms for the 
new math

o Silicon transistors
o Photons
o Electrons
o Magnetic moments of atoms



Poll 1

• Which of the following are instances of representation in the new 
math

o 000

o 𝟎 𝟏 𝟐 𝟑

o 00 + 01

o 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

• Which of the following are potential practical platforms for the 
new math

o Silicon transistors
o Photons
o Electrons
o Magnetic moments of atoms



Practical implementation

• Simply use a collection of quantum bits
o Will simultaneously represent all states

• What is missing?

|00>

|01>

|10>

|11>

2-bits



Practical implementation

• Simply use a collection of quantum bits
o Will simultaneously represent all states

• What is missing?
o How do you implement the functions?

 Invertible rotations

|00>

|01>

|10>

|11>

2-bits

But first you must design the functions (we will see how later) 



Practical implementation

• Simply use a collection of quantum bits
o Will simultaneously represent all states

• What is missing?
o How do you implement the functions?

 Invertible rotations

o How do you measure the output vectors?

|00>

|01>

|10>

|11>

2-bits



The problem with measurement

• Reality Doesn’t Exist Until We Measure It, 
Quantum Experiment Confirms

• https://www.sciencealert.com/reality-doesn-t-
exist-until-we-measure-it-quantum-experiment-
confirms

• Measuring a quantum variable “collapses” it



Measurement

• Measuring the output collapses the vector to one of the 
states

o Bit pattern

• Which one

Measurement



Measurement

Measurement

ଶ

ଶ



Measurement collapses the 
vector

• How many measurements must you take to recover 
the full vector?
o Keeping in mind that each measurement means creating 

and manipulation “qbits” from scratch
o Can you even recover it fully?

Measurement

ଶ

ଶ



It’s complex, but not complicated

• The “weights” and are actually complex variables
o Because Schroedinger’s equation describes them as complex

• This simple visualization is wrong
o Its missing two dimensions

 The imaginary components of and 



Restrictions on the weights

• 𝑎 ଶ + 𝑏 ଶ = 1

o The qubits live on the surface of a hypersphere

• 𝑃(|0⟩) = 𝑎 ଶ,  𝑃(|1⟩) = 𝑏 ଶ

• 𝒂 = 𝒓𝒂𝒆𝒋𝜸, 𝒃 = 𝒓𝒃𝒆𝒋𝜹

o 𝑟௔
ଶ + 𝑟௕

ଶ = 1

o The vector is actually a complex vector, where each component has a magnitude and a phase

• The length of the vector is always 1 (because the probabilities of 0 and 1 must sum to 1.0)
o Repeated measurement can recover the magnitude 𝑟௔ and 𝑟௕ of the components, but not the phase



Visualizing the qubit

• , 

• The common phase represents the angle of the 
viewpoint and can be ignored



Visualizing the qubit
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• The common phase represents the angle of the 
viewpoint and can be ignored

 



Visualizing the qubit

•

• Have the form , 



Visualizing the qubit

•

• Have the form , 



The Bloch Sphere

• Visualizing the qubit
o 2 variable visualization in a 3D space



Poll 2

• Mark all true statements
o Although it is currently not possible to recover the value of a qubit fully 

(because measurement always collapses it to one of the states), we can expect 
that eventually physics will catch up and this will become possible

o We can recover the approximate value of a qubit by repeated measurement, 
which will give us estimates of the P(|0>) and P(|1>) for the qubit

o We can never recover the true, or even approximate value of a qubit, and can 
never hope to do so in the current universe with its laws of physics

o We should stop worrying about metaphysics and just go to the beach…
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Returning to measurement

• The system lives in a superposition of states
o A “phasor” in the quantum space

o But what are these “states”?

• To ‘read’ it, we need a measuring device

• The measuring device basically represents a set of “bases”, or 
coordinate axes, with respect to which we attempt to assign 
coordinate values to the phasor

o The bases represent the set of orthogonal “states”



Returning to Measurement

• Measuring the output collapses the vector to one of the states

• The states represent bases
o And are associated with bit patterns only by fiat

• Measurement collapses the vector to one of the bases

Measurement



The physical Qubit

• The definition of your “bases” is  a matter of convention

• The only requirement is that they are at right angles to one 
another.

• The representation of the vector will, obviously, depend on the 
bases



The physical Qubit

• The definition of your “bases” is  a matter of convention

• The only requirement is that they are at right angles to one 
another.

• The representation of the vector will, obviously, depend on the 
bases

But how do these “bases” relate 
to our new math?



Revisiting classical computation

• Note:  In classical computation, the symbols 0 or 1 are just 
designations

o The circuits don’t actually produce a number 0 or a number 1

• Typically designate some voltage level (or voltage pattern) 
V0 and “0” and V1 as “1”

o The key is that there are only two levels, so there is one unique 
Boolean representation derived from it

|1>

଴

ଵ
଴

ଵ



Quantum bases

• In quantum computing too, values are just arbitrary designations

• We now have bases instead of voltage levels. These must be designated
o E.g. the horizontal bit basis is designated as bit value 0 and the vertical basis is designated 

as bit value 1

o To distinguish between the value 0 and the direction of the basis that represents 0, we will 
designate it using a special notation: the “BRA-KET” notation

 Bit value 0  |0>

 Bit value 1  |1>

|0>

|1>



Bras, Kets, and vectors

|0>

|1>

BRA – KET notation:  Bases are represented using 
“BRA”s and “KET”s

The symbol inside the Bra-ket can be anything, but it 
represents a unit step in a direction

Vector notation: Represent 
as vectors.

The directions for and are 

implicitly the canonical bit bases

In bit bases:

Bases are actually directions, which 
can be represented as vectors .  



Bras, Kets, and vectors

|0>

|1>
Vector notation: Represent 
as vectors.

In bit bases:
଴

ଵ

All phasors are also often represented using the Bra-Ket notation
But the phase is also a vector, which is a location in the space

଴

ଵ
଴ ଵ



Back to Bases…

• We always specify some (possibly arbitrarily chosen) directions as our 
``canonical’’ bases

o These are typically designated as the ``bit’’ bases, representing the boolean values 0 and 1, 
represented as |0> and |1>

• But we can also have other bases 
o Which will have their own bra-ket symbols

o The alternate bases can be defined in terms of our bit bases (or, alternately, our bit bases 
can be defined in terms of these other bases)

|0>

|1>
|a>

|b>

|0>

|1>



Alternate bases: The “sign” bases

• A very popular set of alternate bases are the “sign” bases
o Designated as and respectively
o These are at +45 and -45 degrees to the bit bases, respectively

• Flipping between bit-based representations and sign-based 
representations is an often-encountered operation



Alternate bases: The “sign” bases

• Defining the sign bases in terms of the bit bases

+ −

Note: By definition, bases are always unit length

What would the bit bases be in terms of the sign bases?



Measurement fixes the qubit

• First measurement:  with P = 
• Second measurement:  with P = 
• Third measurement:  with P = 
• …

଴

ଵ



The phasors are unique, but the 
representation is not

• No absolute definition of direction or sign
o But the state of the system is well defined!
o The space is defined, and the direction of the (physical) 

phasor is well defined

• The actual representation depends on the bases used
o Only restriction: the bases must be orthogonal



The phasors are unique, the 
representation is not

଴

ଵ
଴

ଵ

଴  + ଵ

଴ + ଵ

• The representation depends on the bases
o Think orientation of your polarized glasses..



The phasors are unique, the 
representation is not

|1>
଴

ଵ|->
଴

ଵ

଴|0> + ଵ|1>

଴|+> + ଵ|−>

• The representation depends on the bases
o Think orientation of your polarized glasses..

The space of phasors is a complex Hilbert space. A qubit is a vector on a unit 
sphere in this space.  It can be expressed as the superposition of any
set of orthogonal bases
Superposition == linear combination



The phasors are unique, the 
representation is not

|1>
଴

ଵ|->
଴

ଵ

଴|0> + ଵ|1>

଴|+> + ଵ|−>

• The representation depends on the bases
o Think orientation of your polarized glasses..

Phasors can be represented either as vectors
or using Dirac’s “Ket” notation

The space of phasors is a complex Hilbert space. A qubit is a vector on a unit 
sphere in this space.  It can be expressed as the superposition of any
set of orthogonal bases
Superposition == linear combination

A Ket representation represents the underlying reality and is independent of bases
The vector representation depends on the bases



Bases can be expressed in terms 
of each other

|0>

|1> |+>

|0> + |1>

|0> − |1>

|+> + |−>

|+> − |−>

|->



Bases can be expressed in terms 
of each other

|0>

|1> |+>

In bit bases:

|->

+

−



Bases can be expressed in terms 
of each other

|0>

|1> |+>

|0> + |1>

|0> − |1>

In bit bases: In sign bases:

|+> + |−>

|+> − |−>

|->



You can measure using either 
bases!!

• What are |0>) and |1>)?
• What are |+>) and |−>)?



You can measure using either 
bases!!

• What are |0>) and |1>) ?
• What are |+>) and |−>) using and ?



So what is measurement
• Measurement projects the phasor on the basis with a 

probability that is the square of the length of the projection
o Using bit basis representation, but measuring on sign basis:

|+>)= ଴

ଵ

ு

ଶ

|−>)= ଴

ଵ

ு

ଶ



So what is measurement
• Measurement projects the phasor on the basis with a 

probability that is the square of the length of the projection
o Using bit basis representation, but measuring on sign basis:

|+>)= ଴

ଵ

ு

ଶ

|−>)= ଴

ଵ

ு

ଶ

What will be
P(|+>) and P(|->) using
the sign bases for
representation?

What will be
P(|0>) and P(|1>) using
the sign bases for
representation?



So what is measurement
• Measurement projects the phasor on the basis with a 

probability that is the square of the length of the projection
o Using bit basis representation, but measuring on sign basis:

|+>)= ଴

ଵ

ு

ଶ

|−>)= ଴

ଵ

ு

ଶ

What will be
P(|+>) and P(|->) using
the sign bases for
representation?

What will be
P(|0>) and P(|1>) using
the sign bases for
representation?

P(basis) is simply the square
of the cosine of the angle between
the phasor and the basis



Some basic math

• The projection of a complex vector on a complex 
vector is given by

• For unit vectors it is the cosine of the angle 
between them

• For any basis, the probability of measuring that 
basis is the square of the cosine between the 
phasor and the basis



A different basis…

|0>

|1>
଴

ଵ

଴|0> + ଵ|1>

• What would P(|u>) and P(|v>) be?

|0> + |1>

|0> + |1>

|u>

|v>



Measurement simplifies life

• By fixing the value

଴

ଵ



Measurement simplifies life

• By fixing the value

଴

ଵ

|->

|+>

|->

|+>

|->

|+>



Measurement simplifies life

• By fixing the value

• Or does it?

଴

ଵ

|->

|+>

|->

|+>

|->

|+>



Measurement is not absolute

• Collapsing the vector according to one basis can 
still keep it indeterminate for other bases!
o We will use this feature

Measurement

ଶ

ଶ

𝜃



Measurement simplifies life

଴

ଵ



Measurement simplifies life

଴

ଵ

P= ଴
ଶ



Measurement simplifies life

଴

ଵ

|->

|+>

Change bases

P= ଴
ଶ



Measurement simplifies life

଴

ଵ
|-> |+>

Change bases

P= ଴
ଶ

|->

|+>

P=



Measurement simplifies life
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P= ଴
ଶ

Change bases

|->
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P=



Measurement simplifies life

଴

ଵ

|->

|+>

Change bases

P= ଴
ଶ

|->

|+>

P=

Change bases

P=



The world isn’t what you think it 
is!!!

• Repeated measurements with different bases can 
completely alter reality!!!



And so…



Quiz 3

• A qubit   |0> is measured using the sign bases. 
What is the probability that the measured value is 
|+>?

• The measured output is remeasured using the bit 
bases.  What is the probability that the measured 
value is |0>?



Quiz 3

• A qubit   |0> is measured using the sign bases. 
What is the probability that the measured value is 
|+>?
o 0.5

• The measured output is remeasured using the bit 
bases.  What is the probability that the measured 
value is |0>?
o 0.5



Uncertainty Principle

• Can a qubit have perfectly unambiguous bit value 
and sign value?
o Unambiguous bit value: or 
o Unambiguous sign value: or 



Heisenberg’s uncertainty 
principle
• The “spread” of a phasor along the bit basis is defined as 

o It is minimum when the bit is unambiguous

o It is maximum when the phasor is at 45 degrees: ଵ

ଶ

ଵ

ଶ

• For the sign basis, the spread is 
o It is minimum when the phasor is aligned to one of the sign bases, 

i.e at 45 degrees to the bit bases
o It is maximum when the phasor is aligned to the bit bases and 

equals 

• More generally 



No Cloning Theorem

• A Qubit can never be cloned!
o A system cannot take in one qubit and output two 

copies of the same qubit
o Why?

Quantum
ClonerQ

Q

Q



No Destruction Theorem

• A Qubit can never be destroyed!
o A system cannot take in N qubits and output N-1 qubits
o Why?

Quantum
ClonerQ Q

Q



A digression: How do we 
measure with different bases?
• We will specifically consider the sign bases vs the bit bases?

o The distinction between the two is that they are at 45 degrees to one 
another

• Keep in mind that there is no “absolute” basis
o There’s no “absolute bit basis” and no “absolute sign basis”
o The bit and sign bases only differ from each other through their 

relation to one another
 45 degrees

• I.e.  We can set the sign bases by first choosing a bit basis, and 
then choosing a sign basis at 45/-135 degrees

o Or by first choosing a sign basis, and then a bit basis that’s at -45/135 
degrees to it



Bit bases and Sign basis

Bit bases Sign bases

Bit bases Sign bases
The bit bases can be oriented anyhow The sign bases are at 45o to the bit bases



So here’s what we know about 
the qubit

• A qubit exists in a superposition of states

• When you measure it, it will show up in one of the 
states
o Observed reality

• Exactly how it will show up depends on the bases of 
measurement
o Repeated measurements with different bases can change 

the observed reality

• Can we build something useful with this already



So here’s what we know about 
the qubit

• A qubit exists in a superposition of states

• When you measure it, it will show up in one of the 
states
o Observed reality

• Exactly how it will show up depends on the bases of 
measurement
o Repeated measurements with different bases can change 

the observed reality

• Can we build something useful with this already

Quantum Cryptography!!



Cryptography 101: An insecure 
channel

• Normal communication:
o Alice sends Bob a message
o Bob gets the message
o Everyone else gets the message as well

 It’s a public channel

o Disaster ensues

My password is “Tweedledum”



Cryptography 101: An secure 
channel

• Encrypted communication communication:
o Alice garbles the message using a formula that only she and Bob 

know
o She sends Bob the message

 Over the public channel – all channels are public

o Everyone hears it, but has no idea what it’s saying
o Only Bob can de-garble the message because he knows the formula

Blarg blargity blarg

“Tweedledum” “Tweedledum”



Cryptography

• Cryptography is the technique of converting messages to a form that is 
indecipherable to all but the intended recipient (who may even be 
yourself)

o Encrypting: Converting the message to something that’s not decipherable
o Decrypting: Recovering the message from the encrypted message
o Breaking an encryption: Figuring out how to decipher the message without 

being told how to
 Usually done by someone who is not the intended recipient

• Modern cryptography is done using mathematical functions that employ 
secret numbers called “keys” to encrypt and decrypt the message



Basics: Cryptography 101
• Messages and Encryption

Encryption
EK1(.)

Decryption
DK2(.)

Plaintext (M) Ciphertext (C)
Original
Plaintext (M)

Encryption 
Key (K1)

Decryption 
Key (K2)

EK1(M) = C DK2(C) = M

Cryptographic Algorithm or Cipher – mathematical functions used for 
encryption and decryption

Key – Input required for the encryption (decryption) algorithm(s)
Cryptosystem – algorithms and all possible plaintexts, ciphertexts, keys
A Good Cryptosystem – all the security inherent in the knowledge of keys, 

and none in the knowledge of algorithms 
80



Basics: Cryptography 101
• Symmetric Cryptosystem

o Encryption key is identical to the decryption key

Encryption
EK1(.)

Decryption
DK2(.)

Plaintext (M) Ciphertext (C)
Original
Plaintext (M)

Encryption 
Key (K1)

Decryption 
Key (K2)

EK1(M) = C DK2(C) = M

Problem – Key must be distributed in 
secret and cannot be compromised. 

81



Basics: Cryptography 101
• Public-key (asymmetric) Cryptosystem

o Different keys for encryption and decryption

Encryption
EK1(.)

Decryption
DK2(.)

Plaintext (M) Ciphertext (C)
Original
Plaintext (M)

Encryption 
Key (K1)

Decryption 
Key (K2)

EK1(M) = C DK2(C) = M

First described in
(Diffie and Hellman, 1976)

82



Quantum cryptography

• Even a single qubit exists in a superposition of states

• When you measure it, it will show up in one of the states
o Observed reality

• Exactly how it will show up depends on the bases of 
measurement

o Repeated measurements with different bases can change the observed 
reality

• Can we use quantum computing to provide more secure 
encryption

• Various proposals, but the most “practical” one involves not the 
encryption, but the keys …


